5.26.18 NOP Charles

Kitt Peak Nightly Observing Program

Splendors of the Universe on YOUR Night!

Many pictures are links to larger versions.
Click here for the “Best images of the OTOP” Gallery and more information.

Big Dipper

The Big Dipper (also known as the Plough) is an asterism consisting of the seven brightest stars of the constellation Ursa Major. Four define a “bowl” or “body” and three define a “handle” or “head”. It is recognized as a distinct grouping in many cultures. The North Star (Polaris), the current northern pole star and the tip of the handle of the Little Dipper, can be located by extending an imaginary line from Big Dipper star Merak (β) through Dubhe (α). This makes it useful in celestial navigation.

Engagement Ring

The Engagement Ring: Through binoculars, the North Star (Polaris) seems to be the brightest on a small ring of stars. Not a constellation or cluster, this asterism looks like a diamond engagement ring on which Polaris shines brightly as the diamond.

Little Dipper

Constellation Ursa Minor is colloquially known in the US as the Little Dipper, because its seven brightest stars seem to form the shape of a dipper (ladle or scoop). The star at the end of the dipper handle is Polaris, the North Star. Polaris can also be found by following a line through two stars in Ursa Major—Alpha and Beta Ursae Majoris—that form the end of the ‘bowl’ of the Big Dipper, for 30 degrees (three upright fists at arms’ length) across the night sky.

Boötes

Boötes has a funny name. Pronounced boh-OH-deez, this constellation’s name means sheepherder, or herdsman. It looks kind of like a kite, or a shoe. Some remember that “Boötes look like a boot” to help pick it out in the sky.

Canis Major

Canis Major, the “big dog”, boasts the brightest star in the night sky—Sirius! Also known as The Dog Star because of the constellation it resides in, Sirius is a massive, hot, blue star—and it’s right next door! One of the reasons Sirius is so bright is that it is so close to us—only 8.6 light-years away. It’s name comes from Greek, and means “glowing” or “scorcher”.

Canis Minor

This little constellation with a name that means “little dog” has only 2 bright stars. One of them is Procyon—one of the brightest stars in the sky, and at only 11.5 light-years away, it’s one of our nearest neighbors in the galactic neighborhood. The name Procyon comes from Greek, and means “before the dog”, referring to the star Sirius, also known as The Dog Star in neighboring Canis Major, the “big dog”.

Draco

Draco the dragon lies close to the North polar point of the celestial sphere. Thus, it is best viewed from north of the equator. This celestial dragon has a long serpentine shape that winds around the constellation Ursa Minor (better known by the name Little Dipper), which is far fainter than it’s companion, Ursa Major. The tail of Draco separates these two constellations.

Gemini

Gemini is a well known zodiac constellation. Zodiac constellations line up with the plane of the Solar System in our sky, an intersection known as the ecliptic. This means you will find planets passing through Gemini from time to time. Gemini is also grazed by the plane of the Milky Way, and therefore has a few deep sky objects within its boundaries. Gemini’s brightest stars get their names from twins Castor and Pollux of Greek mythology.

Hercules

Hercules is named for the famous hero of Greek mythology by the same name. It’s one of the larger constellations, but its stars are of only moderate brightness. The Keystone is a well known trapezoid-shaped asterism (association of stars that are not an official constellation) within Hercules. This constellation is host to M13 (Messier 13), a globular star cluster. Otherwise known as the Hercules Globular Cluster, M13 is home to 300,000 stars, and is just over 22,000 light-years away.

Hydra

Hydra, the sea serpent, with it’s long, serpentine shape, is the largest constellation by area, in the sky. Hydra is sandwiched between the plane of the Solar System (the ecliptic) to the north, and the plane of the Milky Way galaxy to the south. Just out of reach of the galactic plane, there aren’t any particularly bright stars in Hydra, but there is a variety of deep sky objects, including a few galaxies. Nearby are constellations crater, a cup, and corvus, a crow, closely related to hydra in Greek myth.

Leo

Leo is a fairly well known constellation, because the plane of the Solar System runs through it. Such constellations are called Zodiac Constellations. Leo has some notable, bright stars, in it to boot. The brightest of these, Regulus is at the bottom of a series of stars arrayed in the form of a sickle, or a backwards question mark. This constellation does look more or less like the side profile of a lion lying on the ground, with its head up.

Libra

Libra is a fainter constellation, but easy enough to spot, once you’re familiar with the shape. It lies along the ecliptic (the plane of the Solar System), so planets pass through now and then. The names of the two brightest stars of Libra, which are Zubeneschamali and Zubenelgenubi, come form Arabic, and mean “the northern claw”, and “the southern claw”, respectively. Libra was once considered to be part of the constellation Scorpius, the scorpion. Zubeneschamali and Zubenelgenubi were seen as the claws of the scorpion.

Scorpius

Both the plane of the Solar System (called the ecliptic) and the plane of the Milky Way pass through Scorpius—the scorpion. As a result, you can find both the planets of our Solar System (which move along the ecliptic), and many kinds of deep sky objects in this constellation. Scorpius’s brightest star, Antares, is also known as the Heart of the Scorpion, because of it’s reddish hue and location in the chest of the scorpion. Being both red in color, and near the ecliptic, Antares is a rival of sorts to the planet Mars, which is also reddish in color, and occasionally passes through Scorpius. The name Antares means “opposing Mars”.

Ursa Major

Ursa Major, or, the Big Bear, is one of the best known and most well recognized constellations, but you might know it by a different name. Contained within the boundaries of the constellation Ursa Major is the Big Dipper, which is not a true constellation, but an asterism. The Big Dipper is useful for finding both the North Star and the bright star Arcturus. Follow the curve of the handle to “arc to Arcturus” and use to two stars in the dipper opposite the handle to point to the North Star.

Ursa Minor

Ursa Minor, the Little Bear, is much fainter than it’s companion  the Big Bear, Ursa Major. Within Ursa Minor is the well known asterism The Little Dipper. The end of the tail of the bear, or the end of the handle of the dipper, is a star called Polaris—the Pole Star, or the North Star. This special star happens to sit at the point where the Earth’s axis of rotation intersects the sky

M51 Whirlpool Galaxy

M51, the Whirlpool Galaxy, gets its name from its bright and prominent spiral arms. It lies at a distance of 23 million light-years away. It also has a smaller, companion galaxy (NGC 5195). The two galaxies are one of the best examples of interacting galaxies.    

M13 Hercules Globular

M13, the “Great Globular Cluster in Hercules” was first discovered by Edmund Halley in 1714, and later catalogued by Charles Messier in 1764. It contains 300,000 stars, and is 22,000 light-years away. Light would need over a century to traverse its diameter.

M3

M3 is a globular cluster with a half of a million stars. It orbits the core of our Milky Way Galaxy almost perpendicular to the galactic disk. It is currently 33,900 light-years away, and approaching our Solar System at 100 miles per second.

Clouds

Kitt Peak has an abundance of clear nights, but that doesn’t mean the clouds never move in. We hope you’ll join us again another time when our dark mountain skies are at their best!

Ecliptic

The ecliptic is a path in the sky, forming a great circle around the Earth, which the Sun and other planets of the Solar System move along. It is formed where the plane of the Solar System intersects with the Earth’s sky.

Scintillation

The twinkling of star light is a beautiful effect of the Earth’s atmosphere. As light passes through our atmosphere, its path is deviated (refracted) multiple times before reaching the ground. Stars that are near to the horizon will scintillate much more than stars high overhead since you are looking through more air (often the refracted light will display individual colors). In space, stars would not twinkle at all. Astronomers would like it if they could control the effects of this troubling twinkle.

The Green Flash

What we call “The Green Flash” is not so much a flash as a flicker of green color, seen on the top of the sun as it sets (or rises). This rare event needs just the right atmospheric conditions.

M57 (Ring Nebula)

M57: The Ring Nebula. This remnant of a dead star looks exactly as it’s name says – a ring or doughnut shape cloud of gas. The nebula is about 2.6 lightyears across and lies about 2,300 lightyears away.

Jupiter

Jupiter is the largest planet in the Solar System, a “gas giant” 11 Earth-diameters across. Its atmosphere contains the Great Red Spot, a long-lived storm 2-3 times the size of the Earth. The 4 large Galilean satellites and at least 63 smaller moons orbit Jupiter.

Moon

The same side of the Moon always faces Earth because the lunar periods of rotation and revolution are the same. The surface of the moon is covered with impact craters and lava-filled basins. The Moon is about a fourth of Earth’s diameter and is about 30 Earth-diameters away.

Venus

Venus, the second planet, is the brightest natural object in the sky other than the Sun and Moon and is often erroneously called the “morning star” or “evening star.” It is completely wrapped in sulfuric acid clouds and its surface is hot enough to melt lead.

2.1 Meter Telescope and Robo-AO

The 2.1 Meter telescope has an 84″ primary mirror made of Pyrex, that weighs 3,000 lbs. The telescope became operational in 1964—one of the first operational reserach telescopes on the mountain. As part of the National Optical Astronomy Observatory (NOAO) for many decades, it is an important part of the history of the mountain, and has made many important contributions to astronomical research. Despite its significant role within the National Observatory, by 2015 the time came to pass the telescope on to new tenants, so NOAO could focus its efforts on its newer, more advanced telescopes. The Robo-AO team stepped in, and installed their state-of-the-art robotic adaptive optics system on the 2.1 Meter. Adaptive optics allows telescopes to nearly eliminate the distorting effects of the atmosphere, greatly increasing the resolution of the telescope. Thanks to its new tenants, suite of instruments, and the dark skies of Kitt Peak, the 2.1-meter continues to make important contributions to astronomical research.

3.5 Meter WIYN Telescope

The WIYN Observatory is owned and operated by the WIYN Consortium, which consists of the University of Wisconsin, Indiana University, National Optical Astronomy Observatory (NOAO), the University of Missouri, and Purdue University. This partnership between public and private universities and NOAO was the first of its kind. The telescope incorporates many technological breakthroughs including active optics hardware on the back of the primary mirror, which shapes the mirror perfectly, ensuring the telescope is focused precisely. The small, lightweight dome is well ventilated to follow nighttime ambient temperature. Instruments attached to the telescope allow WIYN to gather data and capture vivid astronomical images routinely of sub-arc second quality. The total moving weight of the WIYN telescope and its instruments is 35 tons. WIYN has earned a reputation in particular for its excellent image quality that is now available over a wider field than ever before through the addition of the One Degree Imager optical camera.

90" Bok Telescope

The 90″ (2.3 m) Bok Telescope is the largest telescope operated solely by the University of Arizona’s Steward Observatory. The telescope was dedicated on June 23, 1969 and on April 28, 1996 was officially named in honor of Prof. Bart Bok, director of Steward Observatory from 1966-1969. The Bok Telescope is available for use by astronomers from the University of Arizona, Arizona State University, and Northern Arizona University.

Arizona Radio Observatory 12 Meter Telescope

Originally, a 36 foot (11 meter) radio telescope resided in this dome. Built in 1967, the 36 Foot Telescope, as it was known, was a part of the National Radio Astronomy Observatory (NRAO). In 1984, it was replaced with a slightly larger dish, and the name was changed to the 12 Meter Telescope.

In 2000, the NRAO passed control of the telescope to the University of Arizona. The University of Arizona had been operating the Submillimeter Telescope (SMT) located on Mount Graham since 1992. When it took over operations of the 12m, it created the Arizona Radio Observatory (ARO) which now runs both telescopes.

In 2013, the telescope was replaced with ESO’s ALMA prototype antenna. The new dish is the same size, but has a much better surface accuracy (thereby permitting use at shorter wavelengths), and a more precise mount with better pointing accuracy. The 12m Radio Telescope is used to study molecules in space through the use of molecular spectroscopy at millimeter wavelengths. Many of the molecules that have been discovered in the interstellar medium were discovered by the 12m.

Calypso

Though the Calypso telescope and its 1.2 meter mirror have now been acquired by the Large Synoptic Survey Telescope team, it once occupied the large “garage on stilts” on the west side of the mountain. Edgar O. Smith, a businessman-turned-astrophysicist, designed Kitt Peak’s only privately owned telescope to create the sharpest possible images. The garage-like building rolls away on rails, leaving the telescope very exposed, and able to cool to ambient temperature. Its adaptive optics system can adjust 1,000 times per second to remove atmospheric blurring. Calypso will eventually be moved to Cerro Pachón in the Atacama Desert of Chile. The “garage on stilts” sits empty.

Kitt Peak VLBA Dish

The Very Long Baseline Array (VLBA) is a part of the Long Baseline Observatory (LBO). It consists of a single radio telescope made up of ten 25 meter dishes. The ten dishes are spread across the United States, from Hawaii to the Virgin Islands. One dish is located on Kitt Peak: The LBO Kitt Peak Station. Kitt Peak Station, along with the other dishes, work in unison to point at the same targets at the same time. The data is recorded and later combined. By spreading the dishes out over such a great distance, instead of building them all in the same place, a much higher resolution is gained.

Your Telescope Operator and Guide. Thank you for joining me this evening! See you soon!!

The web page for the program in which you just participated is at
Nightly Observing Program. Most of the above images were taken as
part of
the Overnight Telescope Observing Program. For more information on this unique experience please visit Overnight Telescope Observing Program.
Copyright © 2018 Kitt Peak Visitor Center


Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

Blog at WordPress.com.

Up ↑

%d bloggers like this: