September 5, 2018 – Dark Sky Discovery with Carmen

Kitt Peak Nightly Observing Program

Splendors of the Universe on YOUR Night!

Many pictures are links to larger versions.
Click here for the “Best images of the OTOP” Gallery and more information.

Summer Triangle

The Summer Triangle is an asterism involving a triangle drawn on the northern hemisphere’s celestial sphere. Its defining vertices are the stars Altair, Deneb, and Vega, which are the brightest stars in the constellations Aquila, Cygnus, and Lyra, respectively.

Cygnus

Cygnus is a large constellation, prominent in the Northern Hemisphere. Its name comes from the Greek for “Swan” and can be imagined as a giant, celestial swan, flying overhead, with its wings fully extended. The brightest star in Cygnus is Deneb, which is one of the brightest stars in the sky, and a whopping 800 lightyears away! Deneb is one point of an asterism called the Summer Triangle—three very bright stars that form a large triangle shape prominent in the Northern hemisphere summer skies.

Lyra

Lyra is a small, but notable constellation. It is host to Vega—the fifth brightest star in the sky (or sixth, counting the Sun). Not far from Vega is Messier object 57—the Ring Nebula, which is perhaps the best known planetary nebula in our sky. Lyra’s name is Greek for lyre—a kind of harp.

M17 Swan Nebula

M17, also known as the “Swan Nebula,” or the “Omega Nebula” is a vast cloud of gas—mostly hydrogen, in which clumps of gas are contracting to make new stars. The nebula is 15 light-years across, and 5,500 light-years away.

M110 Larger Satellite of Andromeda

M110: The last Messier object, and the more distant of the Andromeda Galaxy’s two companions. M110 is a tiny elliptical galaxy, about 17,000 lightyears across, containing 9 billion solar masses.

M31 Andromeda Galaxy

The Andromeda Galaxy is our nearest major galactic neighbor. It is a spiral galaxy 2,500,000 light-years away, and has a diameter of 220,000 light-years. This galaxy contains as much material as 1.5 trillion suns.    

M32 Smaller Satellite of Andromeda

M32 is a small, but bright companion galaxy to M31. It orbits M31 much like the Moon orbits the Earth. It lies at the same distance as M31 but is much smaller (6,500 light-years across).    

M22

Near the top of the “teapot” in Sagittarius, M22 is one of the brightest globular star clusters in our sky, and therefore, was probably the first globular cluster ever discovered. Its 80,000 stars span a diameter of about 100 light-years.

Ecliptic

The ecliptic is a path in the sky, forming a great circle around the Earth, which the Sun and other planets of the Solar System move along. It is formed where the plane of the Solar System intersects with the Earth’s sky.

Meteors

Quick streaks of light in the sky called meteors, shooting stars, or falling stars are not stars at all: they are small bits of rock or iron that heat up, glow, and vaporize upon entering the Earth’s atmosphere. When the Earth encounters a clump of many of these particles, we see a meteor shower lasting hours or days.

Milky Way

That clumpy band of light is evidence that we live in a disk-shaped galaxy. Its pale glow is light from about 200 billion suns!

Satellites

Human technology! There are almost 500 of these in Low Earth Orbit (we can’t see the higher ones). We see these little “moving stars” because they reflect sunlight.

The Green Flash

What we call “The Green Flash” is not so much a flash as a flicker of green color, seen on the top of the sun as it sets (or rises). This rare event needs just the right atmospheric conditions.

M11 Wild Duck Cluster

M11 is an open star cluster also known as the “Wild Duck Cluster,” due to its purported prominant V-shape, reminiscent of a flock of wild ducks in flight. This open cluster is 20 light-years in diameter and 6,200 light-years away.   

M57 Ring Nebula

M57: The Ring Nebula. This remnant of a dead star looks exactly as it’s name says – a ring or doughnut shape cloud of gas. The nebula is about 2.6 lightyears across and lies about 2,300 lightyears away.

NGC 7009 The Saturn Nebula

NGC 7009 is planetary nebula in Aquarius with a greenish-yellowish hue. It was formed by a low-mass star ejecting its outer layers into space. The central star is now a tiny white dwarf star with a surface temperature of 55,000 K, ionizing the expelled outer layers with its UV radiation. The green color is caused by double-ionized oxygen. It was named “The Saturn Nebula” by Lord Rosse in the 1840s, when telescopes had improved to the point that its Saturn-like shape could be discerned. 

Veil Nebula

The Veil Nebula: These mysterious, looping ribbons of gas are probably the leftovers of a supernova explosion 5,000-8,000 years ago. The section you saw was a small part of a vast ring 100 lightyears across.

Jupiter

Jupiter is the largest planet in the Solar System, a “gas giant” 11 Earth-diameters across. Its atmosphere contains the Great Red Spot, a long-lived storm 2-3 times the size of the Earth. The 4 large Galilean satellites and at least 63 smaller moons orbit Jupiter.

Mars

Mars, the red planet, has a thin carbon dioxide atmosphere, clouds, dust storms, and polar caps made of dry ice. Images of dry riverbeds from orbiting spacecraft show us that liquid water once flowed on the Martian surface.

Saturn

Saturn, the second-largest planet in the Solar System, is known for its showy but thin rings made of ice chunks as small as dust and as large as buildings. Its largest moon, Titan, has an atmosphere and hydrocarbon lakes; at least 61 smaller moons orbit Saturn.

Venus

Venus, the second planet, is the brightest natural object in the sky other than the Sun and Moon and is often erroneously called the “morning star” or “evening star.” It is completely wrapped in sulfuric acid clouds and its surface is hot enough to melt lead.

Albireo (β Cyg)

Named long before anyone knew it was more than one star, Albireo (β Cygni) comprises of a set of stars marking the beak of Cygnus, the swan. Through a telescope, we see two components shining in pale, but noticeably contrasting colors: orange and blue. The difference in color is due to the stars’ difference in temperature of over 9000°C! The brighter orange component, Albireo A, is actually a true binary system, though we can’t resolve two stars in the telescope. The fainter blue component, Albireo B, may be only passing by, and not gravitationally interacting with Albireo A at all. Albireo is about 430 light-years away.

Double Double (ε Lyr)

The Double-Double (ε Lyrae) looks like two stars in binoculars, but a good telescope shows that both of these two are themselves binaries. However, there may be as many as ten stars in this system! The distant pairs are about 0.16 light-year apart and take about half a million years to orbit one another. The Double-Double is about 160 light-years from Earth.

Your Telescope Operator and Guide. Thank you for joining me this evening! See you soon!!

The web page for the program in which you just participated is at
Nightly Observing Program. Most of the above images were taken as
part of
the Overnight Telescope Observing Program. For more information on this unique experience please visit Overnight Telescope Observing Program.
Copyright © 2018 Kitt Peak Visitor Center


Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

Blog at WordPress.com.

Up ↑

%d bloggers like this: