September 9, 2018 – Dark Sky Discovery with Carmen

Kitt Peak Nightly Observing Program

Splendors of the Universe on YOUR Night!

Many pictures are links to larger versions.
Click here for the “Best images of the OTOP” Gallery and more information.

Big Dipper

The Big Dipper (also known as the Plough) is an asterism consisting of the seven brightest stars of the constellation Ursa Major. Four define a “bowl” or “body” and three define a “handle” or “head”. It is recognized as a distinct grouping in many cultures. The North Star (Polaris), the current northern pole star and the tip of the handle of the Little Dipper, can be located by extending an imaginary line from Big Dipper star Merak (β) through Dubhe (α). This makes it useful in celestial navigation.

Little Dipper

Constellation Ursa Minor is colloquially known in the US as the Little Dipper, because its seven brightest stars seem to form the shape of a dipper (ladle or scoop). The star at the end of the dipper handle is Polaris, the North Star. Polaris can also be found by following a line through two stars in Ursa Major—Alpha and Beta Ursae Majoris—that form the end of the ‘bowl’ of the Big Dipper, for 30 degrees (three upright fists at arms’ length) across the night sky.

Summer Triangle

The Summer Triangle is an asterism involving a triangle drawn on the northern hemisphere’s celestial sphere. Its defining vertices are the stars Altair, Deneb, and Vega, which are the brightest stars in the constellations Aquila, Cygnus, and Lyra, respectively.

Teapot

The brightest stars in the zodiac constellation Sagittarius form the shape of a teapot, complete with lid, handle, and spout. The plane of the Milky Way runs through Sagittarius, and just over the spout and lid of the teapot, making it look as if steam is rising from the spout of the teapot. The center of our Milky Way galaxy is in the direction of this starry steam.

Andromeda

Andromeda was the princess of myth who was sacrificed by her parents to the sea monster Cetus. Fortunately, the hero Perseus came along to save her, and they were eventually married. The constellation Andromeda is host to the Andromeda Galaxy. Although there are smaller, dwarf galaxies that are closer to our galaxy, Andromeda is the closest big galaxy like our own; in fact, it’s bigger.

Cygnus

Cygnus is a large constellation, prominent in the Northern Hemisphere. Its name comes from the Greek for “Swan” and can be imagined as a giant, celestial swan, flying overhead, with its wings fully extended. The brightest star in Cygnus is Deneb, which is one of the brightest stars in the sky, and a whopping 800 lightyears away! Deneb is one point of an asterism called the Summer Triangle—three very bright stars that form a large triangle shape prominent in the Northern hemisphere summer skies.

Delphinus

Little Delphinus looks like a tiny celestial dolphin breaching the waves of a vast cosmic sea. It is small and faint, but has a distinctive dolphin shape, and is right in the middle of the plane of the Milky Way.

Sagittarius

Sagittarius, the archer, is often depicted as a centaur wielding a bow and arrow. Within Sagittarius, is a fairly recognizable teapot shape known to many simply as The Teapot (the teapot is not a true constellation, but an asterism). The plane of the Milky Way passes through Sagittarius, and in fact, the center of the Milky Way is in the direction of the westernmost edge of this constellation—just above the spout of The Teapot. With the plane of the Milky Way passing through, there are a plethora of deep sky objects to be found in Sagittarius.

Ursa Major

Ursa Major, or, the Big Bear, is one of the best known and most well recognized constellations, but you might know it by a different name. Contained within the boundaries of the constellation Ursa Major is the Big Dipper, which is not a true constellation, but an asterism. The Big Dipper is useful for finding both the North Star and the bright star Arcturus. Follow the curve of the handle to “arc to Arcturus” and use to two stars in the dipper opposite the handle to point to the North Star.

Ursa Minor

Ursa Minor, the Little Bear, is much fainter than it’s companion  the Big Bear, Ursa Major. Within Ursa Minor is the well known asterism The Little Dipper. The end of the tail of the bear, or the end of the handle of the dipper, is a star called Polaris—the Pole Star, or the North Star. This special star happens to sit at the point where the Earth’s axis of rotation intersects the sky

M17 Swan Nebula

M17, also known as the “Swan Nebula,” or the “Omega Nebula” is a vast cloud of gas—mostly hydrogen, in which clumps of gas are contracting to make new stars. The nebula is 15 light-years across, and 5,500 light-years away.

M31 Andromeda Galaxy

The Andromeda Galaxy is our nearest major galactic neighbor. It is a spiral galaxy 2,500,000 light-years away, and has a diameter of 220,000 light-years. This galaxy contains as much material as 1.5 trillion suns.    

M74

At a distance of 32 million lightyears in the constellation Pisces, M74 is home to about 100 billion stars. It is the archetypical example of a grand design spiral galaxy. Due to its large apparent size, it is the second lowest surface brightness object in Messier’s catalogue, and the most difficult one to observe. The spiral structure is only visible through a telecsope, when using averted vision under very dark skies.

M13 Hercules Globular

M13, the “Great Globular Cluster in Hercules” was first discovered by Edmund Halley in 1714, and later catalogued by Charles Messier in 1764. It contains 300,000 stars, and is 22,000 light-years away. Light would need over a century to traverse its diameter.

M15

M15 is a distant globular cluster, 33,000 light-years away. It has 100,000 stars, and is one of the oldest known globular clusters, having formed about 12 billion years ago.

Meteors

Quick streaks of light in the sky called meteors, shooting stars, or falling stars are not stars at all: they are small bits of rock or iron that heat up, glow, and vaporize upon entering the Earth’s atmosphere. When the Earth encounters a clump of many of these particles, we see a meteor shower lasting hours or days.

Milky Way

That clumpy band of light is evidence that we live in a disk-shaped galaxy. Its pale glow is light from about 200 billion suns!

Satellites

Human technology! There are almost 500 of these in Low Earth Orbit (we can’t see the higher ones). We see these little “moving stars” because they reflect sunlight.

The Green Flash

What we call “The Green Flash” is not so much a flash as a flicker of green color, seen on the top of the sun as it sets (or rises). This rare event needs just the right atmospheric conditions.

M57 Ring Nebula

M57: The Ring Nebula. This remnant of a dead star looks exactly as it’s name says – a ring or doughnut shape cloud of gas. The nebula is about 2.6 lightyears across and lies about 2,300 lightyears away.

Veil Nebula

The Veil Nebula: These mysterious, looping ribbons of gas are probably the leftovers of a supernova explosion 5,000-8,000 years ago. The section you saw was a small part of a vast ring 100 lightyears across.

Jupiter

Jupiter is the largest planet in the Solar System, a “gas giant” 11 Earth-diameters across. Its atmosphere contains the Great Red Spot, a long-lived storm 2-3 times the size of the Earth. The 4 large Galilean satellites and at least 63 smaller moons orbit Jupiter.

Mars

Mars, the red planet, has a thin carbon dioxide atmosphere, clouds, dust storms, and polar caps made of dry ice. Images of dry riverbeds from orbiting spacecraft show us that liquid water once flowed on the Martian surface.

Saturn

Saturn, the second-largest planet in the Solar System, is known for its showy but thin rings made of ice chunks as small as dust and as large as buildings. Its largest moon, Titan, has an atmosphere and hydrocarbon lakes; at least 61 smaller moons orbit Saturn.

Venus

Venus, the second planet, is the brightest natural object in the sky other than the Sun and Moon and is often erroneously called the “morning star” or “evening star.” It is completely wrapped in sulfuric acid clouds and its surface is hot enough to melt lead.

Albireo (β Cyg)

Named long before anyone knew it was more than one star, Albireo (β Cygni) comprises of a set of stars marking the beak of Cygnus, the swan. Through a telescope, we see two components shining in pale, but noticeably contrasting colors: orange and blue. The difference in color is due to the stars’ difference in temperature of over 9000°C! The brighter orange component, Albireo A, is actually a true binary system, though we can’t resolve two stars in the telescope. The fainter blue component, Albireo B, may be only passing by, and not gravitationally interacting with Albireo A at all. Albireo is about 430 light-years away.

Your Telescope Operator and Guide. Thank you for joining me this evening! See you soon!!

The web page for the program in which you just participated is at
Nightly Observing Program. Most of the above images were taken as
part of
the Overnight Telescope Observing Program. For more information on this unique experience please visit Overnight Telescope Observing Program.
Copyright © 2018 Kitt Peak Visitor Center


Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

Create a free website or blog at WordPress.com.

Up ↑

%d bloggers like this: