October 9th 2018 … Phil’s Dark Sky Discovery Program

Kitt Peak Nightly Observing Program

Splendors of the Universe on YOUR Night!

Many pictures are links to larger versions.
Click here for the “Best images of the OTOP” Gallery and more information.

Little Dipper

Constellation Ursa Minor is colloquially known in the US as the Little Dipper, because its seven brightest stars seem to form the shape of a dipper (ladle or scoop). The star at the end of the dipper handle is Polaris, the North Star. Polaris can also be found by following a line through two stars in Ursa Major—Alpha and Beta Ursae Majoris—that form the end of the ‘bowl’ of the Big Dipper, for 30 degrees (three upright fists at arms’ length) across the night sky.

Summer Triangle

The Summer Triangle is an asterism involving a triangle drawn on the northern hemisphere’s celestial sphere. Its defining vertices are the stars Altair, Deneb, and Vega, which are the brightest stars in the constellations Aquila, Cygnus, and Lyra, respectively.

Teapot

The brightest stars in the zodiac constellation Sagittarius form the shape of a teapot, complete with lid, handle, and spout. The plane of the Milky Way runs through Sagittarius, and just over the spout and lid of the teapot, making it look as if steam is rising from the spout of the teapot. The center of our Milky Way galaxy is in the direction of this starry steam.

M17 Swan Nebula

M17, also known as the “Swan Nebula,” or the “Omega Nebula” is a vast cloud of gas—mostly hydrogen, in which clumps of gas are contracting to make new stars. The nebula is 15 light-years across, and 5,500 light-years away.

M8 Lagoon Nebula

M8: The “Lagoon Nebula.” A huge cloud of gas and dust beside an open cluster of stars (NGC 6530). The Lagoon is a stellar nursery, 4,100 lightyears away, towards the galactic core.

M13 Hercules Globular

M13, the “Great Globular Cluster in Hercules” was first discovered by Edmund Halley in 1714, and later catalogued by Charles Messier in 1764. It contains 300,000 stars, and is 22,000 light-years away. Light would need over a century to traverse its diameter.

M22

Near the top of the “teapot” in Sagittarius, M22 is one of the brightest globular star clusters in our sky, and therefore, was probably the first globular cluster ever discovered. Its 80,000 stars span a diameter of about 100 light-years.

M71

M71 is an unusual, loose globular cluster at a distance of 12,000 light years. Until the 1970s astronomers had classified it as an open cluster due its missing central concentration of stars and the stars having more “metals” compared to other globular clusters. It turns out that with an age of 9.5 billion years, M71 is a few billion years younger than most globular clusters and consists of at least 20,000 stars within a diameter of only 27 light years.

Ecliptic

The ecliptic is a path in the sky, forming a great circle around the Earth, which the Sun and other planets of the Solar System move along. It is formed where the plane of the Solar System intersects with the Earth’s sky.

Meteors

Quick streaks of light in the sky called meteors, shooting stars, or falling stars are not stars at all: they are small bits of rock or iron that heat up, glow, and vaporize upon entering the Earth’s atmosphere. When the Earth encounters a clump of many of these particles, we see a meteor shower lasting hours or days.

Milky Way

That clumpy band of light is evidence that we live in a disk-shaped galaxy. Its pale glow is light from about 200 billion suns!

Double Cluster

The “Double Cluster” (NGC 884 and NGC 869) is a pair of two open star clusters that are a treat for binoculars and telescopes alike. Each is a congregation of many hundreds of stars, around 50-60 light-years in diameter. These clusters are both about 7,500 light-years away.

M16 Eagle Nebula

M16 is a cluster of very young stars located within the “Eagle Nebula” (NGC 6611, also known as the “Star Queen Nebula” or “The Spire”). The nebula itself is generally too faint to see without taking a long exposure photograph. In the constellation Serpens, this cluster was discovered by Jean-Philippe de Cheseaux in 1745-46. The nebula contains several active star-forming gas and dust regions, including the Pillars of Creation made famous by the Hubble Space Telescope.

M6 The Butterfly Cluster

M6, the “Butterfly Cluster” is an open star cluster, located near the tail of Scorpius, next to another open cluter: M7. Containing a few hundred stars, it is smaller than neighbor cluster M7, at about 12 light-years across, and is 1,600 light-years away.

M57 Ring Nebula

M57: The Ring Nebula. This remnant of a dead star looks exactly as it’s name says – a ring or doughnut shape cloud of gas. The nebula is about 2.6 lightyears across and lies about 2,300 lightyears away.

NGC 6826 Blinking Nebula

The faint planetary nebula NGC 6826 is sometimes called the “Blinking Nebula” since it appears to blink when we look at it through a telescope with our eyes. However, the nebula itself is not blinking – it just appears to have this behavior due to the way our eyes detect light.

Mars

Mars, the red planet, has a thin carbon dioxide atmosphere, clouds, dust storms, and polar caps made of dry ice. Images of dry riverbeds from orbiting spacecraft show us that liquid water once flowed on the Martian surface.

Saturn

Saturn, the second-largest planet in the Solar System, is known for its showy but thin rings made of ice chunks as small as dust and as large as buildings. Its largest moon, Titan, has an atmosphere and hydrocarbon lakes; at least 61 smaller moons orbit Saturn.

Albireo (β Cyg)

Named long before anyone knew it was more than one star, Albireo (β Cygni) comprises of a set of stars marking the beak of Cygnus, the swan. Through a telescope, we see two components shining in pale, but noticeably contrasting colors: orange and blue. The difference in color is due to the stars’ difference in temperature of over 9000°C! The brighter orange component, Albireo A, is actually a true binary system, though we can’t resolve two stars in the telescope. The fainter blue component, Albireo B, may be only passing by, and not gravitationally interacting with Albireo A at all. Albireo is about 430 light-years away.

Algol (β Persei)

Algol is a famous variable star. The Arabic name, “al Ghul” (related to the English “ghoul”), means “the demon.” It comes from a longer phrase that refers to the demon’s head. In Greek mythology, the star Algol represented the head of Medusa, held up by Perseus’s fist. To the eye, this star appears slightly bluish white. Close observation will reveal an interesting characteristic. Every 2.9 days, the brightness of Algol drops to just 30 percent of normal. The drop in brightness lasts only a few hours. This variation in brightness may be the reason the star was once considered to be unlucky. The cause of the variation in brightness is a stellar eclipse. Algol is a close double star whose components orbit each other every 2.9 days. Its companion is much fainter than Algol itself, but is actually larger in size. When it passes in front of Algol, it eclipses the light of the brighter companion.

Mu Cephei (μ Cep)

Mu Cephei (μ Cephei), also known as Herschels Garnet Star, is a red supergiant star in the constellation Cepheus. It is one of the largest and most luminous stars known in the Milky Way. It appears garnet red and is given the spectral class of M2 Ia. Since 1943, the spectrum of this star has served as one of the stable anchor points by which other stars are classified.

3.5 Meter WIYN Telescope

The WIYN Observatory is owned and operated by the WIYN Consortium, which consists of the University of Wisconsin, Indiana University, National Optical Astronomy Observatory (NOAO), the University of Missouri, and Purdue University. This partnership between public and private universities and NOAO was the first of its kind. The telescope incorporates many technological breakthroughs including active optics hardware on the back of the primary mirror, which shapes the mirror perfectly, ensuring the telescope is focused precisely. The small, lightweight dome is well ventilated to follow nighttime ambient temperature. Instruments attached to the telescope allow WIYN to gather data and capture vivid astronomical images routinely of sub-arc second quality. The total moving weight of the WIYN telescope and its instruments is 35 tons. WIYN has earned a reputation in particular for its excellent image quality that is now available over a wider field than ever before through the addition of the One Degree Imager optical camera.

Kitt Peak VLBA Dish

The Very Long Baseline Array (VLBA) is a part of the Long Baseline Observatory (LBO). It consists of a single radio telescope made up of ten 25 meter dishes. The ten dishes are spread across the United States, from Hawaii to the Virgin Islands. One dish is located on Kitt Peak: The LBO Kitt Peak Station. Kitt Peak Station, along with the other dishes, work in unison to point at the same targets at the same time. The data is recorded and later combined. By spreading the dishes out over such a great distance, instead of building them all in the same place, a much higher resolution is gained.

Mayall 4 Meter Telescope

The Mayall 4 Meter Telescope was, at the time it was built, one of the largest telescopes in the world. Today, its mirror—which weighs 15 tons—is relatively small next to the mirrors of the world’s largest telescopes. Completed in the mid-’70s, the telescope is housed in an 18-story tall dome, which is designed to withstand hurricane force winds. A blue equatorial horseshoe mount helps the telescope point and track the sky. A new instrument called DESI (Dark Energy Spectroscopic Instrument) will soon be installed on the 4-meter. Once installed, DESI will take spectra of millions of the most distant galaxies and quasars, which astronomers will use to study the effect of dark energy on the expansion of the universe.

The Mayall 4 Meter is named for Nicholas U. Mayall, a former director of Kitt Peak National Observatory who oversaw the building of the telescope.

McMath-Pierce Solar Telescope

The Mc Math Pierce Solar Telescope is actually 3 telescopes-in-one. It was, at the time of its completion in the 1960s, the largest solar telescope in the world. It will remain the largest until the completion of the Daniel K. Inouye Solar Telescope (DKIST) in 2018. The Solar Telescope building looks like a large number 7 rotated onto its side. The vertical tower holds up 3 flat mirrors, which reflect sunlight down the diagonal shaft—a tunnel which extends 200 feet to the ground, and another 300 feet below ground, into the mountain. At the bottom of this tunnel are the three curved primary mirrors, which reflect the light of the Sun back up to about ground level, where the Sun comes into focus in the observing room.

Spacewatch

Spacewatch is the name of a group at the University of Arizona’s Lunar and Planetary Laboratory founded by Prof. Tom Gehrels and Dr. Robert S. McMillan in 1980.  Today, Spacewatch is led by Dr. Robert S. McMillan.  The original goal of Spacewatch was to explore the various populations of small objects in the solar system, and study the statistics of asteroids and comets in order to investigate the dynamical evolution of the solar system.  CCD scanning studies the Main-Belt, Centaur, Trojan, Comet, Trans-Neptunian, and Earth-approaching asteroid populations.  Spacewatch also found potential targets for interplanetary spacecraft missions. Spacewatch currently focuses primarily on followup astrometry of such targets, and especially follows up objects that might present a hazard to the Earth.

Your Telescope Operator and Guide. Thank you for joining me this evening! See you soon!!

The web page for the program in which you just participated is at
Nightly Observing Program. Most of the above images were taken as
part of
the Overnight Telescope Observing Program. For more information on this unique experience please visit Overnight Telescope Observing Program.
Copyright © 2018 Kitt Peak Visitor Center


Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

Blog at WordPress.com.

Up ↑

%d bloggers like this: