October 20, 2018 – Robert and Sara

Kitt Peak Nightly Observing Program

Splendors of the Universe on YOUR Night!

Many pictures are links to larger versions.
Click here for the “Best images of the OTOP” Gallery and more information.

Big Dipper

The Big Dipper (also known as the Plough) is an asterism consisting of the seven brightest stars of the constellation Ursa Major. Four define a “bowl” or “body” and three define a “handle” or “head”. It is recognized as a distinct grouping in many cultures. The North Star (Polaris), the current northern pole star and the tip of the handle of the Little Dipper, can be located by extending an imaginary line from Big Dipper star Merak (β) through Dubhe (α). This makes it useful in celestial navigation.

Engagement Ring

The Engagement Ring: Through binoculars, the North Star (Polaris) seems to be the brightest on a small ring of stars. Not a constellation or cluster, this asterism looks like a diamond engagement ring on which Polaris shines brightly as the diamond.

Summer Triangle

The Summer Triangle is an asterism involving a triangle drawn on the northern hemisphere’s celestial sphere. Its defining vertices are the stars Altair, Deneb, and Vega, which are the brightest stars in the constellations Aquila, Cygnus, and Lyra, respectively.

Teapot

The brightest stars in the zodiac constellation Sagittarius form the shape of a teapot, complete with lid, handle, and spout. The plane of the Milky Way runs through Sagittarius, and just over the spout and lid of the teapot, making it look as if steam is rising from the spout of the teapot. The center of our Milky Way galaxy is in the direction of this starry steam.

Cassiopeia

Cassiopeia is widely recognized by its characteristic W shape, though it may look like an M, a 3, or a Σ depending on its orientation in the sky, and your position on Earth. However it’s oriented, once you’ve come to know its distinctive zig-zag pattern, you’ll spot it with ease. The plane of the Milky Way runs right through Cassiopeia, so it’s full of deep sky objects—in particular, a lot of open star clusters. Cassiopeia is named for the queen form Greek mythology who angered the sea god Poseidon when she boasted that her daughter Andromeda was more beautiful than his sea nymphs. 

Cepheus

King Cepheus from Greek mythology was husband to Cassiopeia and father of Andromeda. The brightest stars in the constellation Cepheus seem to form a kind of crooked house, with the roof pointing to the North. this constellation is very near the Celestial North Pole, so it’s not visible from the Southern Hemisphere. The star Delta Cephei was the first ever identified cepheid variable star, a very important kind of variable stars that helps astronomers determine distances to nearby galaxies.

Draco

Draco the dragon lies close to the North polar point of the celestial sphere. Thus, it is best viewed from north of the equator. This celestial dragon has a long serpentine shape that winds around the constellation Ursa Minor (better known by the name Little Dipper), which is far fainter than it’s companion, Ursa Major. The tail of Draco separates these two constellations.

Hercules

Hercules is named for the famous hero of Greek mythology by the same name. It’s one of the larger constellations, but its stars are of only moderate brightness. The Keystone is a well known trapezoid-shaped asterism (association of stars that are not an official constellation) within Hercules. This constellation is host to M13 (Messier 13), a globular star cluster. Otherwise known as the Hercules Globular Cluster, M13 is home to 300,000 stars, and is just over 22,000 light-years away.

Lyra

Lyra is a small, but notable constellation. It is host to Vega—the fifth brightest star in the sky (or sixth, counting the Sun). Not far from Vega is Messier object 57—the Ring Nebula, which is perhaps the best known planetary nebula in our sky. Lyra’s name is Greek for lyre—a kind of harp.

Sagittarius

Sagittarius, the archer, is often depicted as a centaur wielding a bow and arrow. Within Sagittarius, is a fairly recognizable teapot shape known to many simply as The Teapot (the teapot is not a true constellation, but an asterism). The plane of the Milky Way passes through Sagittarius, and in fact, the center of the Milky Way is in the direction of the westernmost edge of this constellation—just above the spout of The Teapot. With the plane of the Milky Way passing through, there are a plethora of deep sky objects to be found in Sagittarius.

Ursa Major

Ursa Major, or, the Big Bear, is one of the best known and most well recognized constellations, but you might know it by a different name. Contained within the boundaries of the constellation Ursa Major is the Big Dipper, which is not a true constellation, but an asterism. The Big Dipper is useful for finding both the North Star and the bright star Arcturus. Follow the curve of the handle to “arc to Arcturus” and use to two stars in the dipper opposite the handle to point to the North Star.

Ursa Minor

Ursa Minor, the Little Bear, is much fainter than it’s companion  the Big Bear, Ursa Major. Within Ursa Minor is the well known asterism The Little Dipper. The end of the tail of the bear, or the end of the handle of the dipper, is a star called Polaris—the Pole Star, or the North Star. This special star happens to sit at the point where the Earth’s axis of rotation intersects the sky

M31 Andromeda Galaxy

The Andromeda Galaxy is our nearest major galactic neighbor. It is a spiral galaxy 2,500,000 light-years away, and has a diameter of 220,000 light-years. This galaxy contains as much material as 1.5 trillion suns.    

M13 Hercules Globular

M13, the “Great Globular Cluster in Hercules” was first discovered by Edmund Halley in 1714, and later catalogued by Charles Messier in 1764. It contains 300,000 stars, and is 22,000 light-years away. Light would need over a century to traverse its diameter.

M22

Near the top of the “teapot” in Sagittarius, M22 is one of the brightest globular star clusters in our sky, and therefore, was probably the first globular cluster ever discovered. Its 80,000 stars span a diameter of about 100 light-years.

Clouds

Kitt Peak has an abundance of clear nights, but that doesn’t mean the clouds never move in. We hope you’ll join us again another time when our dark mountain skies are at their best!

Milky Way

That clumpy band of light is evidence that we live in a disk-shaped galaxy. Its pale glow is light from about 200 billion suns!

Satellites

Human technology! There are almost 500 of these in Low Earth Orbit (we can’t see the higher ones). We see these little “moving stars” because they reflect sunlight.

M57 Ring Nebula

M57: The Ring Nebula. This remnant of a dead star looks exactly as it’s name says – a ring or doughnut shape cloud of gas. The nebula is about 2.6 lightyears across and lies about 2,300 lightyears away.

Mars

Mars, the red planet, has a thin carbon dioxide atmosphere, clouds, dust storms, and polar caps made of dry ice. Images of dry riverbeds from orbiting spacecraft show us that liquid water once flowed on the Martian surface.

Moon

The same side of the Moon always faces Earth because the lunar periods of rotation and revolution are the same. The surface of the moon is covered with impact craters and lava-filled basins. The Moon is about a fourth of Earth’s diameter and is about 30 Earth-diameters away.

Neptune

Neptune, eighth planet from the Sun, is a blue “gas giant” about 4 Earth-diameters across. At least 14 moons orbit Neptune. Galileo accidentally observed Neptune in 1612 and 1613 but did not realize it differed from the stars—its true discovery would wait until 1846.

Saturn

Saturn, the second-largest planet in the Solar System, is known for its showy but thin rings made of ice chunks as small as dust and as large as buildings. Its largest moon, Titan, has an atmosphere and hydrocarbon lakes; at least 61 smaller moons orbit Saturn.

Albireo (β Cyg)

Named long before anyone knew it was more than one star, Albireo (β Cygni) comprises of a set of stars marking the beak of Cygnus, the swan. Through a telescope, we see two components shining in pale, but noticeably contrasting colors: orange and blue. The difference in color is due to the stars’ difference in temperature of over 9000°C! The brighter orange component, Albireo A, is actually a true binary system, though we can’t resolve two stars in the telescope. The fainter blue component, Albireo B, may be only passing by, and not gravitationally interacting with Albireo A at all. Albireo is about 430 light-years away.

Arizona Radio Observatory 12 Meter Telescope

Originally, a 36 foot (11 meter) radio telescope resided in this dome. Built in 1967, the 36 Foot Telescope, as it was known, was a part of the National Radio Astronomy Observatory (NRAO). In 1984, it was replaced with a slightly larger dish, and the name was changed to the 12 Meter Telescope.

In 2000, the NRAO passed control of the telescope to the University of Arizona. The University of Arizona had been operating the Submillimeter Telescope (SMT) located on Mount Graham since 1992. When it took over operations of the 12m, it created the Arizona Radio Observatory (ARO) which now runs both telescopes.

In 2013, the telescope was replaced with ESO’s ALMA prototype antenna. The new dish is the same size, but has a much better surface accuracy (thereby permitting use at shorter wavelengths), and a more precise mount with better pointing accuracy. The 12m Radio Telescope is used to study molecules in space through the use of molecular spectroscopy at millimeter wavelengths. Many of the molecules that have been discovered in the interstellar medium were discovered by the 12m.

Your Telescope Operator and Guide. Thank you for joining me this evening! See you soon!!

Your Telescope Operator and Guide. Thank you for joining me this evening! See you soon!!

The web page for the program in which you just participated is at
Nightly Observing Program. Most of the above images were taken as
part of
the Overnight Telescope Observing Program. For more information on this unique experience please visit Overnight Telescope Observing Program.
Copyright © 2018 Kitt Peak Visitor Center


Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

Blog at WordPress.com.

Up ↑

%d bloggers like this: