November 5th, 2018 – Sunset and Telescope with Carmen

Kitt Peak Nightly Observing Program

Splendors of the Universe on YOUR Night!

Many pictures are links to larger versions.
Click here for the “Best images of the OTOP” Gallery and more information.

Big Dipper

The Big Dipper (also known as the Plough) is an asterism consisting of the seven brightest stars of the constellation Ursa Major. Four define a “bowl” or “body” and three define a “handle” or “head”. It is recognized as a distinct grouping in many cultures. The North Star (Polaris), the current northern pole star and the tip of the handle of the Little Dipper, can be located by extending an imaginary line from Big Dipper star Merak (β) through Dubhe (α). This makes it useful in celestial navigation.

Little Dipper

Constellation Ursa Minor is colloquially known in the US as the Little Dipper, because its seven brightest stars seem to form the shape of a dipper (ladle or scoop). The star at the end of the dipper handle is Polaris, the North Star. Polaris can also be found by following a line through two stars in Ursa Major—Alpha and Beta Ursae Majoris—that form the end of the ‘bowl’ of the Big Dipper, for 30 degrees (three upright fists at arms’ length) across the night sky.

Summer Triangle

The Summer Triangle is an asterism involving a triangle drawn on the northern hemisphere’s celestial sphere. Its defining vertices are the stars Altair, Deneb, and Vega, which are the brightest stars in the constellations Aquila, Cygnus, and Lyra, respectively.

Andromeda

Andromeda was the princess of myth who was sacrificed by her parents to the sea monster Cetus. Fortunately, the hero Perseus came along to save her, and they were eventually married. The constellation Andromeda is host to the Andromeda Galaxy. Although there are smaller, dwarf galaxies that are closer to our galaxy, Andromeda is the closest big galaxy like our own; in fact, it’s bigger.

Cassiopeia

Cassiopeia is widely recognized by its characteristic W shape, though it may look like an M, a 3, or a Σ depending on its orientation in the sky, and your position on Earth. However it’s oriented, once you’ve come to know its distinctive zig-zag pattern, you’ll spot it with ease. The plane of the Milky Way runs right through Cassiopeia, so it’s full of deep sky objects—in particular, a lot of open star clusters. Cassiopeia is named for the queen form Greek mythology who angered the sea god Poseidon when she boasted that her daughter Andromeda was more beautiful than his sea nymphs. 

Cygnus

Cygnus is a large constellation, prominent in the Northern Hemisphere. Its name comes from the Greek for “Swan” and can be imagined as a giant, celestial swan, flying overhead, with its wings fully extended. The brightest star in Cygnus is Deneb, which is one of the brightest stars in the sky, and a whopping 800 lightyears away! Deneb is one point of an asterism called the Summer Triangle—three very bright stars that form a large triangle shape prominent in the Northern hemisphere summer skies.

Lyra

Lyra is a small, but notable constellation. It is host to Vega—the fifth brightest star in the sky (or sixth, counting the Sun). Not far from Vega is Messier object 57—the Ring Nebula, which is perhaps the best known planetary nebula in our sky. Lyra’s name is Greek for lyre—a kind of harp.

Ursa Major

Ursa Major, or, the Big Bear, is one of the best known and most well recognized constellations, but you might know it by a different name. Contained within the boundaries of the constellation Ursa Major is the Big Dipper, which is not a true constellation, but an asterism. The Big Dipper is useful for finding both the North Star and the bright star Arcturus. Follow the curve of the handle to “arc to Arcturus” and use to two stars in the dipper opposite the handle to point to the North Star.

Ursa Minor

Ursa Minor, the Little Bear, is much fainter than it’s companion  the Big Bear, Ursa Major. Within Ursa Minor is the well known asterism The Little Dipper. The end of the tail of the bear, or the end of the handle of the dipper, is a star called Polaris—the Pole Star, or the North Star. This special star happens to sit at the point where the Earth’s axis of rotation intersects the sky

M31 Andromeda Galaxy

The Andromeda Galaxy is our nearest major galactic neighbor. It is a spiral galaxy 2,500,000 light-years away, and has a diameter of 220,000 light-years. This galaxy contains as much material as 1.5 trillion suns.    

M33 Triangulum Galaxy

The Triangulum Galaxy, like M31, is a prominent member of our local group of galaxies. It lies at a distance of 2,900,000 light-years away and is approximately 60,000 light-years across.

M74

At a distance of 32 million lightyears in the constellation Pisces, M74 is home to about 100 billion stars. It is the archetypical example of a grand design spiral galaxy. Due to its large apparent size, it is the second lowest surface brightness object in Messier’s catalogue, and the most difficult one to observe. The spiral structure is only visible through a telecsope, when using averted vision under very dark skies.

NGC 253 Sculptor Galaxy

Ngc 253: The “Silver Dollar Galaxy”. A lumpy, dusty, nearly-edge-on spiral galaxy just a bit smaller than the Milky Way. At least 75 billion solar masses, eleven million lightyears from here. It was discovered by Caroline Hershel in 1783.

M13 Hercules Globular

M13, the “Great Globular Cluster in Hercules” was first discovered by Edmund Halley in 1714, and later catalogued by Charles Messier in 1764. It contains 300,000 stars, and is 22,000 light-years away. Light would need over a century to traverse its diameter.

M2

M2 is a globular star cluster containing roughly 150,000 stars, and is located about 35,000 light-years away. It has a diameter of 170 light-years, making it one of the largest known clusters by volume.

Meteors

Quick streaks of light in the sky called meteors, shooting stars, or falling stars are not stars at all: they are small bits of rock or iron that heat up, glow, and vaporize upon entering the Earth’s atmosphere. When the Earth encounters a clump of many of these particles, we see a meteor shower lasting hours or days.

Milky Way

That clumpy band of light is evidence that we live in a disk-shaped galaxy. Its pale glow is light from about 200 billion suns!

Satellites

Human technology! There are almost 500 of these in Low Earth Orbit (we can’t see the higher ones). We see these little “moving stars” because they reflect sunlight.

The Green Flash

What we call “The Green Flash” is not so much a flash as a flicker of green color, seen on the top of the sun as it sets (or rises). This rare event needs just the right atmospheric conditions.

M45 The Pleiades

M45, the “Pleiades,” is a bright, nearby star cluster, in the last stages of star formation. About seven stars stand out as the brightest in the cluster, and is why the cluster is also known as the “Seven Sisters,” alluding to the Pleiades, or Seven Sisters from Greek mythology. In Japanese, the cluster is known as “スバル,” “Subaru,” and is featured as the logo of the automobile manufacturer of the same name. The Pleiades lies about 440 light-years away and is a very young (for an open star cluster) 100 million years old.

NGC 457 The Owl Cluster

NGC 457 is an open star cluster in the constellation Cassiopeia. It was discovered by William Herschel in 1787, and lies over 7,900 light-years away from the Sun. It has an estimated age of 21 million years. The cluster is sometimes referred by amateur astronomers as the Owl Cluster or ET Cluster. The cluster features a rich field of about 150 stars of magnitudes 12-15.    

M57 Ring Nebula

M57: The Ring Nebula. This remnant of a dead star looks exactly as it’s name says – a ring or doughnut shape cloud of gas. The nebula is about 2.6 lightyears across and lies about 2,300 lightyears away.

NGC 7662 Blue Snowball

NGC 7662: A planetary nebula nicknamed the “Blue Snowball.” It is a round cloud thrown off by a dying star, expanded to 1.6 lightyears in diameter. The expanding hot gas would have fried any planets orbiting the star.

Mars

Mars, the red planet, has a thin carbon dioxide atmosphere, clouds, dust storms, and polar caps made of dry ice. Images of dry riverbeds from orbiting spacecraft show us that liquid water once flowed on the Martian surface.

Neptune

Neptune, eighth planet from the Sun, is a blue “gas giant” about 4 Earth-diameters across. At least 14 moons orbit Neptune. Galileo accidentally observed Neptune in 1612 and 1613 but did not realize it differed from the stars—its true discovery would wait until 1846.

Saturn

Saturn, the second-largest planet in the Solar System, is known for its showy but thin rings made of ice chunks as small as dust and as large as buildings. Its largest moon, Titan, has an atmosphere and hydrocarbon lakes; at least 61 smaller moons orbit Saturn.

Uranus

Uranus, the seventh planet from the Sun, was discovered by Sir William Herschel in 1781. It has a dark set of rings and at least 27 moons. Uranus’s axis of rotation is almost 90 degrees from those of the other planets, as if Uranus has been tipped onto its side.

Albireo (β Cyg)

Named long before anyone knew it was more than one star, Albireo (β Cygni) comprises of a set of stars marking the beak of Cygnus, the swan. Through a telescope, we see two components shining in pale, but noticeably contrasting colors: orange and blue. The difference in color is due to the stars’ difference in temperature of over 9000°C! The brighter orange component, Albireo A, is actually a true binary system, though we can’t resolve two stars in the telescope. The fainter blue component, Albireo B, may be only passing by, and not gravitationally interacting with Albireo A at all. Albireo is about 430 light-years away.

Double Double (ε Lyr)

The Double-Double (ε Lyrae) looks like two stars in binoculars, but a good telescope shows that both of these two are themselves binaries. However, there may be as many as ten stars in this system! The distant pairs are about 0.16 light-year apart and take about half a million years to orbit one another. The Double-Double is about 160 light-years from Earth.

Your Telescope Operator and Guide. Thank you for joining me this evening! See you soon!!

The web page for the program in which you just participated is at
Nightly Observing Program. Most of the above images were taken as
part of
the Overnight Telescope Observing Program. For more information on this unique experience please visit Overnight Telescope Observing Program.
Copyright © 2018 Kitt Peak Visitor Center


Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

Blog at WordPress.com.

Up ↑

%d bloggers like this: