November 26, 2018….Phil’s DSD Group

Kitt Peak Nightly Observing Program

Splendors of the Universe on YOUR Night!

Many pictures are links to larger versions.
Click here for the “Best images of the OTOP” Gallery and more information.

Little Dipper

Constellation Ursa Minor is colloquially known in the US as the Little Dipper, because its seven brightest stars seem to form the shape of a dipper (ladle or scoop). The star at the end of the dipper handle is Polaris, the North Star. Polaris can also be found by following a line through two stars in Ursa Major—Alpha and Beta Ursae Majoris—that form the end of the ‘bowl’ of the Big Dipper, for 30 degrees (three upright fists at arms’ length) across the night sky.

Summer Triangle

The Summer Triangle is an asterism involving a triangle drawn on the northern hemisphere’s celestial sphere. Its defining vertices are the stars Altair, Deneb, and Vega, which are the brightest stars in the constellations Aquila, Cygnus, and Lyra, respectively.

Andromeda

Andromeda was the princess of myth who was sacrificed by her parents to the sea monster Cetus. Fortunately, the hero Perseus came along to save her, and they were eventually married. The constellation Andromeda is host to the Andromeda Galaxy. Although there are smaller, dwarf galaxies that are closer to our galaxy, Andromeda is the closest big galaxy like our own; in fact, it’s bigger.

Aries

Aries is a medium-brightness constellation, but with few stars and an indistinctive shape, which makes it more challenging to recognize.

Auriga

Auriga is located north of the celestial equator. Its name is the Latin word for “charioteer”, associating it with various mythological charioteers, including Erichthonius and Myrtilus. Auriga is most prominent in the northern Hemisphere winter sky, along with the five other constellations that have stars in the Winter Hexagon asterism. Auriga is half the size of the largest constellation, Hydra. Its brightest star, Capella, is an unusual multiple star system among the brightest stars in the night sky. Because of its position near the winter Milky Way, Auriga has many bright open clusters within its borders, including M36, M37, and M38. In addition, it has one prominent nebula, the Flaming Star Nebula, associated with the variable star AE Aurigae.

Cassiopeia

Cassiopeia is widely recognized by its characteristic W shape, though it may look like an M, a 3, or a Σ depending on its orientation in the sky, and your position on Earth. However it’s oriented, once you’ve come to know its distinctive zig-zag pattern, you’ll spot it with ease. The plane of the Milky Way runs right through Cassiopeia, so it’s full of deep sky objects—in particular, a lot of open star clusters. Cassiopeia is named for the queen form Greek mythology who angered the sea god Poseidon when she boasted that her daughter Andromeda was more beautiful than his sea nymphs. 

Cepheus

King Cepheus from Greek mythology was husband to Cassiopeia and father of Andromeda. The brightest stars in the constellation Cepheus seem to form a kind of crooked house, with the roof pointing to the North. this constellation is very near the Celestial North Pole, so it’s not visible from the Southern Hemisphere. The star Delta Cephei was the first ever identified cepheid variable star, a very important kind of variable stars that helps astronomers determine distances to nearby galaxies.

Cygnus

Cygnus is a large constellation, prominent in the Northern Hemisphere. Its name comes from the Greek for “Swan” and can be imagined as a giant, celestial swan, flying overhead, with its wings fully extended. The brightest star in Cygnus is Deneb, which is one of the brightest stars in the sky, and a whopping 800 lightyears away! Deneb is one point of an asterism called the Summer Triangle—three very bright stars that form a large triangle shape prominent in the Northern hemisphere summer skies.

Draco

Draco the dragon lies close to the North polar point of the celestial sphere. Thus, it is best viewed from north of the equator. This celestial dragon has a long serpentine shape that winds around the constellation Ursa Minor (better known by the name Little Dipper), which is far fainter than it’s companion, Ursa Major. The tail of Draco separates these two constellations.

Pegasus

This constellation is named for one of the most beloved creatures of Greek mythology—the winged horse named Pegasus. Within Pegasus is a well known asterism containing the 3 brightest stars in the constellation (+ 1 in Andromeda) called The Great Square of Pegasus. Alpheratz, the brightest star in the square, actually belongs to the constellation Andromeda, but in the past, this star had been considered to belong to both constellations.

Perseus

Hero of Greek mythology, Perseus is the character who slayed Medusa and rescued the Princess Andromeda from the sea monster Cetus. This is why you will find the constellations Andromeda, Cetus, and Andromeda’s parents Cassiopeia and Cepheus, nearby each other in the sky. Perseus’s brightest star is called Mirfak (Arabic for elbow). The plane of the Milky Way runs through Perseus, so there are many deep sky objects to be found.

Taurus

 

You can look to Taurus, the bull, to find the two closest open star clusters to our Solar System. The Pleiades (or, Seven Sisters) is the second closest at 444 light-years away. It’s an obvious cluster to even the naked eye. The Pleiades is named for the seven daughters of Atlas and Pleione of Greek Mythology. To the left of the pleiades, the Hyades (siblings to the Pleiades in mythology) is the closest open star cluster to Earth at 153 light-years away. The Hyades has a characteristic V shape to help identify it.

Triangulum

Triangulum is a small and simple constellation, and perhaps the only constellation that truly looks like its namesake—a triangle. Within the boundaries of the constellation lies one of our nearest neighbor galaxies—a galaxy known as the Triangulum Galaxy (Messier 33). At only 3 million light-years away, Triangulum is one of our closest neighbors.

Ursa Minor

Ursa Minor, the Little Bear, is much fainter than it’s companion  the Big Bear, Ursa Major. Within Ursa Minor is the well known asterism The Little Dipper. The end of the tail of the bear, or the end of the handle of the dipper, is a star called Polaris—the Pole Star, or the North Star. This special star happens to sit at the point where the Earth’s axis of rotation intersects the sky

M31 Andromeda Galaxy

The Andromeda Galaxy is our nearest major galactic neighbor. It is a spiral galaxy 2,500,000 light-years away, and has a diameter of 220,000 light-years. This galaxy contains as much material as 1.5 trillion suns.    

M33 Triangulum Galaxy

The Triangulum Galaxy, like M31, is a prominent member of our local group of galaxies. It lies at a distance of 2,900,000 light-years away and is approximately 60,000 light-years across.

NGC 253 Sculptor Galaxy

Ngc 253: The “Silver Dollar Galaxy”. A lumpy, dusty, nearly-edge-on spiral galaxy just a bit smaller than the Milky Way. At least 75 billion solar masses, eleven million lightyears from here. It was discovered by Caroline Hershel in 1783.

M15

M15 is a distant globular cluster, 33,000 light-years away. It has 100,000 stars, and is one of the oldest known globular clusters, having formed about 12 billion years ago.

M71

M71 is an unusual, loose globular cluster at a distance of 12,000 light years. Until the 1970s astronomers had classified it as an open cluster due its missing central concentration of stars and the stars having more “metals” compared to other globular clusters. It turns out that with an age of 9.5 billion years, M71 is a few billion years younger than most globular clusters and consists of at least 20,000 stars within a diameter of only 27 light years.

Ecliptic

The ecliptic is a path in the sky, forming a great circle around the Earth, which the Sun and other planets of the Solar System move along. It is formed where the plane of the Solar System intersects with the Earth’s sky.

Satellites

Human technology! There are almost 500 of these in Low Earth Orbit (we can’t see the higher ones). We see these little “moving stars” because they reflect sunlight.

Double Cluster

The “Double Cluster” (NGC 884 and NGC 869) is a pair of two open star clusters that are a treat for binoculars and telescopes alike. Each is a congregation of many hundreds of stars, around 50-60 light-years in diameter. These clusters are both about 7,500 light-years away.

M35

M35 is an open star cluster of over 300 stars. It lies at a distance of 2,800 light-years from Earth, near the foot of Castor, one of the Gemini twins. Tiny nearby cluster NGC 2158 is in the same field of view.

M36 Pinwheel Cluster

M36, the “Pinwheel Cluster” is one of three bright open star clusters in the constellation of Auriga. It lies about 4,100 light-years away, and is about 14 light-years across, contains about 60 stars, and is about 25 million years old.    

M37 Salt & Pepper Cluster

M37, the “Salt and Pepper Cluster” is one of three bright open star clusters in the constellation Auriga. It is the brightest and richest of the three. It lies about 4,500 light-years away, contains about 150 stars, has a diameter of about 25 light-years, and is 450 million years old.   

M45 The Pleiades

M45, the “Pleiades,” is a bright, nearby star cluster, in the last stages of star formation. About seven stars stand out as the brightest in the cluster, and is why the cluster is also known as the “Seven Sisters,” alluding to the Pleiades, or Seven Sisters from Greek mythology. In Japanese, the cluster is known as “スバル,” “Subaru,” and is featured as the logo of the automobile manufacturer of the same name. The Pleiades lies about 440 light-years away and is a very young (for an open star cluster) 100 million years old.

NGC 457 The Owl Cluster

NGC 457 is an open star cluster in the constellation Cassiopeia. It was discovered by William Herschel in 1787, and lies over 7,900 light-years away from the Sun. It has an estimated age of 21 million years. The cluster is sometimes referred by amateur astronomers as the Owl Cluster or ET Cluster. The cluster features a rich field of about 150 stars of magnitudes 12-15.    

M1 Crab Nebula

M1: The Crab Nebula. The explosion that created this nebula was seen by Chinese astronomers in 1054 A.D. This explosion was bright enough to be seen in the daytime for almost a month. The nebula is 11 lightyears in diameter and is expanding at the rate of 1,500 km per second.

M57 Ring Nebula

M57: The Ring Nebula. This remnant of a dead star looks exactly as it’s name says – a ring or doughnut shape cloud of gas. The nebula is about 2.6 lightyears across and lies about 2,300 lightyears away.

NGC 6826 Blinking Nebula

The faint planetary nebula NGC 6826 is sometimes called the “Blinking Nebula” since it appears to blink when we look at it through a telescope with our eyes. However, the nebula itself is not blinking – it just appears to have this behavior due to the way our eyes detect light.

NGC 7009 The Saturn Nebula

NGC 7009 is planetary nebula in Aquarius with a greenish-yellowish hue. It was formed by a low-mass star ejecting its outer layers into space. The central star is now a tiny white dwarf star with a surface temperature of 55,000 K, ionizing the expelled outer layers with its UV radiation. The green color is caused by double-ionized oxygen. It was named “The Saturn Nebula” by Lord Rosse in the 1840s, when telescopes had improved to the point that its Saturn-like shape could be discerned. 

Mars

Mars, the red planet, has a thin carbon dioxide atmosphere, clouds, dust storms, and polar caps made of dry ice. Images of dry riverbeds from orbiting spacecraft show us that liquid water once flowed on the Martian surface.

Neptune

Neptune, eighth planet from the Sun, is a blue “gas giant” about 4 Earth-diameters across. At least 14 moons orbit Neptune. Galileo accidentally observed Neptune in 1612 and 1613 but did not realize it differed from the stars—its true discovery would wait until 1846.

Uranus

Uranus, the seventh planet from the Sun, was discovered by Sir William Herschel in 1781. It has a dark set of rings and at least 27 moons. Uranus’s axis of rotation is almost 90 degrees from those of the other planets, as if Uranus has been tipped onto its side.

Albireo (β Cyg)

Named long before anyone knew it was more than one star, Albireo (β Cygni) comprises of a set of stars marking the beak of Cygnus, the swan. Through a telescope, we see two components shining in pale, but noticeably contrasting colors: orange and blue. The difference in color is due to the stars’ difference in temperature of over 9000°C! The brighter orange component, Albireo A, is actually a true binary system, though we can’t resolve two stars in the telescope. The fainter blue component, Albireo B, may be only passing by, and not gravitationally interacting with Albireo A at all. Albireo is about 430 light-years away.

Double Double (ε Lyr)

The Double-Double (ε Lyrae) looks like two stars in binoculars, but a good telescope shows that both of these two are themselves binaries. However, there may be as many as ten stars in this system! The distant pairs are about 0.16 light-year apart and take about half a million years to orbit one another. The Double-Double is about 160 light-years from Earth.

3.5 Meter WIYN Telescope

The WIYN Observatory is owned and operated by the WIYN Consortium, which consists of the University of Wisconsin, Indiana University, National Optical Astronomy Observatory (NOAO), the University of Missouri, and Purdue University. This partnership between public and private universities and NOAO was the first of its kind. The telescope incorporates many technological breakthroughs including active optics hardware on the back of the primary mirror, which shapes the mirror perfectly, ensuring the telescope is focused precisely. The small, lightweight dome is well ventilated to follow nighttime ambient temperature. Instruments attached to the telescope allow WIYN to gather data and capture vivid astronomical images routinely of sub-arc second quality. The total moving weight of the WIYN telescope and its instruments is 35 tons. WIYN has earned a reputation in particular for its excellent image quality that is now available over a wider field than ever before through the addition of the One Degree Imager optical camera.

Mayall 4 Meter Telescope

The Mayall 4 Meter Telescope was, at the time it was built, one of the largest telescopes in the world. Today, its mirror—which weighs 15 tons—is relatively small next to the mirrors of the world’s largest telescopes. Completed in the mid-’70s, the telescope is housed in an 18-story tall dome, which is designed to withstand hurricane force winds. A blue equatorial horseshoe mount helps the telescope point and track the sky. A new instrument called DESI (Dark Energy Spectroscopic Instrument) will soon be installed on the 4-meter. Once installed, DESI will take spectra of millions of the most distant galaxies and quasars, which astronomers will use to study the effect of dark energy on the expansion of the universe.

The Mayall 4 Meter is named for Nicholas U. Mayall, a former director of Kitt Peak National Observatory who oversaw the building of the telescope.

McMath-Pierce Solar Telescope

The Mc Math Pierce Solar Telescope is actually 3 telescopes-in-one. It was, at the time of its completion in the 1960s, the largest solar telescope in the world. It will remain the largest until the completion of the Daniel K. Inouye Solar Telescope (DKIST) in 2018. The Solar Telescope building looks like a large number 7 rotated onto its side. The vertical tower holds up 3 flat mirrors, which reflect sunlight down the diagonal shaft—a tunnel which extends 200 feet to the ground, and another 300 feet below ground, into the mountain. At the bottom of this tunnel are the three curved primary mirrors, which reflect the light of the Sun back up to about ground level, where the Sun comes into focus in the observing room.

Your Telescope Operator and Guide. Thank you for joining me this evening! See you soon!!

The web page for the program in which you just participated is at
Nightly Observing Program. Most of the above images were taken as
part of
the Overnight Telescope Observing Program. For more information on this unique experience please visit Overnight Telescope Observing Program.
Copyright © 2018 Kitt Peak Visitor Center


Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

Blog at WordPress.com.

Up ↑

%d bloggers like this: