December 3, 2018….Phil’s DSD Group

Kitt Peak Nightly Observing Program

Splendors of the Universe on YOUR Night!

Many pictures are links to larger versions.
Click here for the “Best images of the OTOP” Gallery and more information.

Little Dipper

Constellation Ursa Minor is colloquially known in the US as the Little Dipper, because its seven brightest stars seem to form the shape of a dipper (ladle or scoop). The star at the end of the dipper handle is Polaris, the North Star. Polaris can also be found by following a line through two stars in Ursa Major—Alpha and Beta Ursae Majoris—that form the end of the ‘bowl’ of the Big Dipper, for 30 degrees (three upright fists at arms’ length) across the night sky.

Summer Triangle

The Summer Triangle is an asterism involving a triangle drawn on the northern hemisphere’s celestial sphere. Its defining vertices are the stars Altair, Deneb, and Vega, which are the brightest stars in the constellations Aquila, Cygnus, and Lyra, respectively.

M15

M15 is a distant globular cluster, 33,000 light-years away. It has 100,000 stars, and is one of the oldest known globular clusters, having formed about 12 billion years ago.

M2

M2 is a globular star cluster containing roughly 150,000 stars, and is located about 35,000 light-years away. It has a diameter of 170 light-years, making it one of the largest known clusters by volume.

Ecliptic

The ecliptic is a path in the sky, forming a great circle around the Earth, which the Sun and other planets of the Solar System move along. It is formed where the plane of the Solar System intersects with the Earth’s sky.

Meteors

Quick streaks of light in the sky called meteors, shooting stars, or falling stars are not stars at all: they are small bits of rock or iron that heat up, glow, and vaporize upon entering the Earth’s atmosphere. When the Earth encounters a clump of many of these particles, we see a meteor shower lasting hours or days.

Milky Way

That clumpy band of light is evidence that we live in a disk-shaped galaxy. Its pale glow is light from about 200 billion suns!

Satellites

Human technology! There are almost 500 of these in Low Earth Orbit (we can’t see the higher ones). We see these little “moving stars” because they reflect sunlight.

Zodiacal Light

Zodiacal light is the faint, smooth glow marking the ecliptic (the plane of the solar system). It is sunlight scattered off of gas and dust that orbits the Sun. This is a rare sight, only visible under very dark skies, and best viewed early in the year when the Ecliptic is higher above the horizon.

Double Cluster

The “Double Cluster” (NGC 884 and NGC 869) is a pair of two open star clusters that are a treat for binoculars and telescopes alike. Each is a congregation of many hundreds of stars, around 50-60 light-years in diameter. These clusters are both about 7,500 light-years away.

M36 Pinwheel Cluster

M36, the “Pinwheel Cluster” is one of three bright open star clusters in the constellation of Auriga. It lies about 4,100 light-years away, and is about 14 light-years across, contains about 60 stars, and is about 25 million years old.    

M37 Salt & Pepper Cluster

M37, the “Salt and Pepper Cluster” is one of three bright open star clusters in the constellation Auriga. It is the brightest and richest of the three. It lies about 4,500 light-years away, contains about 150 stars, has a diameter of about 25 light-years, and is 450 million years old.   

M38 Starfish Cluster

M38, the “Starfish Cluster” is one of a trio of bright open star clusters in the constellation Auriga. It lies about 4,200 light-years away, has a diameter of about 25 light-years, and is 220 million years old.    

M45 The Pleiades

M45, the “Pleiades,” is a bright, nearby star cluster, in the last stages of star formation. About seven stars stand out as the brightest in the cluster, and is why the cluster is also known as the “Seven Sisters,” alluding to the Pleiades, or Seven Sisters from Greek mythology. In Japanese, the cluster is known as “スバル,” “Subaru,” and is featured as the logo of the automobile manufacturer of the same name. The Pleiades lies about 440 light-years away and is a very young (for an open star cluster) 100 million years old.

NGC 457 The Owl Cluster

NGC 457 is an open star cluster in the constellation Cassiopeia. It was discovered by William Herschel in 1787, and lies over 7,900 light-years away from the Sun. It has an estimated age of 21 million years. The cluster is sometimes referred by amateur astronomers as the Owl Cluster or ET Cluster. The cluster features a rich field of about 150 stars of magnitudes 12-15.    

M1 Crab Nebula

M1: The Crab Nebula. The explosion that created this nebula was seen by Chinese astronomers in 1054 A.D. This explosion was bright enough to be seen in the daytime for almost a month. The nebula is 11 lightyears in diameter and is expanding at the rate of 1,500 km per second.

M57 Ring Nebula

M57: The Ring Nebula. This remnant of a dead star looks exactly as it’s name says – a ring or doughnut shape cloud of gas. The nebula is about 2.6 lightyears across and lies about 2,300 lightyears away.

NGC 6826 Blinking Nebula

The faint planetary nebula NGC 6826 is sometimes called the “Blinking Nebula” since it appears to blink when we look at it through a telescope with our eyes. However, the nebula itself is not blinking – it just appears to have this behavior due to the way our eyes detect light.

Mars

Mars, the red planet, has a thin carbon dioxide atmosphere, clouds, dust storms, and polar caps made of dry ice. Images of dry riverbeds from orbiting spacecraft show us that liquid water once flowed on the Martian surface.

Uranus

Uranus, the seventh planet from the Sun, was discovered by Sir William Herschel in 1781. It has a dark set of rings and at least 27 moons. Uranus’s axis of rotation is almost 90 degrees from those of the other planets, as if Uranus has been tipped onto its side.

Albireo (β Cyg)

Named long before anyone knew it was more than one star, Albireo (β Cygni) comprises of a set of stars marking the beak of Cygnus, the swan. Through a telescope, we see two components shining in pale, but noticeably contrasting colors: orange and blue. The difference in color is due to the stars’ difference in temperature of over 9000°C! The brighter orange component, Albireo A, is actually a true binary system, though we can’t resolve two stars in the telescope. The fainter blue component, Albireo B, may be only passing by, and not gravitationally interacting with Albireo A at all. Albireo is about 430 light-years away.

Algol (β Persei)

Algol is a famous variable star. The Arabic name, “al Ghul” (related to the English “ghoul”), means “the demon.” It comes from a longer phrase that refers to the demon’s head. In Greek mythology, the star Algol represented the head of Medusa, held up by Perseus’s fist. To the eye, this star appears slightly bluish white. Close observation will reveal an interesting characteristic. Every 2.9 days, the brightness of Algol drops to just 30 percent of normal. The drop in brightness lasts only a few hours. This variation in brightness may be the reason the star was once considered to be unlucky. The cause of the variation in brightness is a stellar eclipse. Algol is a close double star whose components orbit each other every 2.9 days. Its companion is much fainter than Algol itself, but is actually larger in size. When it passes in front of Algol, it eclipses the light of the brighter companion.

Double Double (ε Lyr)

The Double-Double (ε Lyrae) looks like two stars in binoculars, but a good telescope shows that both of these two are themselves binaries. However, there may be as many as ten stars in this system! The distant pairs are about 0.16 light-year apart and take about half a million years to orbit one another. The Double-Double is about 160 light-years from Earth.

Mu Cephei (μ Cep)

Mu Cephei (μ Cephei), also known as Herschels Garnet Star, is a red supergiant star in the constellation Cepheus. It is one of the largest and most luminous stars known in the Milky Way. It appears garnet red and is given the spectral class of M2 Ia. Since 1943, the spectrum of this star has served as one of the stable anchor points by which other stars are classified.

3.5 Meter WIYN Telescope

The WIYN Observatory is owned and operated by the WIYN Consortium, which consists of the University of Wisconsin, Indiana University, National Optical Astronomy Observatory (NOAO), the University of Missouri, and Purdue University. This partnership between public and private universities and NOAO was the first of its kind. The telescope incorporates many technological breakthroughs including active optics hardware on the back of the primary mirror, which shapes the mirror perfectly, ensuring the telescope is focused precisely. The small, lightweight dome is well ventilated to follow nighttime ambient temperature. Instruments attached to the telescope allow WIYN to gather data and capture vivid astronomical images routinely of sub-arc second quality. The total moving weight of the WIYN telescope and its instruments is 35 tons. WIYN has earned a reputation in particular for its excellent image quality that is now available over a wider field than ever before through the addition of the One Degree Imager optical camera.

Kitt Peak VLBA Dish

The Very Long Baseline Array (VLBA) is a part of the Long Baseline Observatory (LBO). It consists of a single radio telescope made up of ten 25 meter dishes. The ten dishes are spread across the United States, from Hawaii to the Virgin Islands. One dish is located on Kitt Peak: The LBO Kitt Peak Station. Kitt Peak Station, along with the other dishes, work in unison to point at the same targets at the same time. The data is recorded and later combined. By spreading the dishes out over such a great distance, instead of building them all in the same place, a much higher resolution is gained.

Mayall 4 Meter Telescope

The Mayall 4 Meter Telescope was, at the time it was built, one of the largest telescopes in the world. Today, its mirror—which weighs 15 tons—is relatively small next to the mirrors of the world’s largest telescopes. Completed in the mid-’70s, the telescope is housed in an 18-story tall dome, which is designed to withstand hurricane force winds. A blue equatorial horseshoe mount helps the telescope point and track the sky. A new instrument called DESI (Dark Energy Spectroscopic Instrument) will soon be installed on the 4-meter. Once installed, DESI will take spectra of millions of the most distant galaxies and quasars, which astronomers will use to study the effect of dark energy on the expansion of the universe.

The Mayall 4 Meter is named for Nicholas U. Mayall, a former director of Kitt Peak National Observatory who oversaw the building of the telescope.

Your Telescope Operator and Guide. Thank you for joining me this evening! See you soon!!

The web page for the program in which you just participated is at
Nightly Observing Program. Most of the above images were taken as
part of
the Overnight Telescope Observing Program. For more information on this unique experience please visit Overnight Telescope Observing Program.
Copyright © 2018 Kitt Peak Visitor Center


Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

Blog at WordPress.com.

Up ↑

%d bloggers like this: