December 21st, 2018 – Nightly Observing Program with Carmen and Robert

Kitt Peak Nightly Observing Program

Splendors of the Universe on YOUR Night!

Many pictures are links to larger versions.
Click here for the “Best images of the OTOP” Gallery and more information.


Kitt Peak has an abundance of clear nights, but that doesn’t mean the clouds never move in. We hope you’ll join us again another time when our dark mountain skies are at their best!


Mars, the red planet, has a thin carbon dioxide atmosphere, clouds, dust storms, and polar caps made of dry ice. Images of dry riverbeds from orbiting spacecraft show us that liquid water once flowed on the Martian surface.


The same side of the Moon always faces Earth because the lunar periods of rotation and revolution are the same. The surface of the moon is covered with impact craters and lava-filled basins. The Moon is about a fourth of Earth’s diameter and is about 30 Earth-diameters away.


Uranus, the seventh planet from the Sun, was discovered by Sir William Herschel in 1781. It has a dark set of rings and at least 27 moons. Uranus’s axis of rotation is almost 90 degrees from those of the other planets, as if Uranus has been tipped onto its side.

Mesarthim (γ Arietis)

Mesarthim is one of the brighter stars making up the constellation Aries—the ram. It is actually a pair of stars—a double star—204 light-years away. It’s component stars are of similar brightness and both white. They are separated by about 500 times the distance between the Earth and the Sun, and take approximately 5,000 years to orbit each other. The apparent (slightly) dimmer star, Gamma-1, is actually the hotter and more luminous star. Much of its light is ultraviolet, and invisible to human eyes. The apparent (slightly) brighter star, Gamma-2, has some interesting characteristics that suggest not only that it may be evolving from a dwarf to a subgiant, but also that it is highly magnetized.

3.5 Meter WIYN Telescope

The WIYN Observatory is owned and operated by the WIYN Consortium, which consists of the University of Wisconsin, Indiana University, National Optical Astronomy Observatory (NOAO), the University of Missouri, and Purdue University. This partnership between public and private universities and NOAO was the first of its kind. The telescope incorporates many technological breakthroughs including active optics hardware on the back of the primary mirror, which shapes the mirror perfectly, ensuring the telescope is focused precisely. The small, lightweight dome is well ventilated to follow nighttime ambient temperature. Instruments attached to the telescope allow WIYN to gather data and capture vivid astronomical images routinely of sub-arc second quality. The total moving weight of the WIYN telescope and its instruments is 35 tons. WIYN has earned a reputation in particular for its excellent image quality that is now available over a wider field than ever before through the addition of the One Degree Imager optical camera.

Arizona Radio Observatory 12 Meter Telescope

Originally, a 36 foot (11 meter) radio telescope resided in this dome. Built in 1967, the 36 Foot Telescope, as it was known, was a part of the National Radio Astronomy Observatory (NRAO). In 1984, it was replaced with a slightly larger dish, and the name was changed to the 12 Meter Telescope.

In 2000, the NRAO passed control of the telescope to the University of Arizona. The University of Arizona had been operating the Submillimeter Telescope (SMT) located on Mount Graham since 1992. When it took over operations of the 12m, it created the Arizona Radio Observatory (ARO) which now runs both telescopes.

In 2013, the telescope was replaced with ESO’s ALMA prototype antenna. The new dish is the same size, but has a much better surface accuracy (thereby permitting use at shorter wavelengths), and a more precise mount with better pointing accuracy. The 12m Radio Telescope is used to study molecules in space through the use of molecular spectroscopy at millimeter wavelengths. Many of the molecules that have been discovered in the interstellar medium were discovered by the 12m.

Kitt Peak VLBA Dish

The Very Long Baseline Array (VLBA) is a part of the Long Baseline Observatory (LBO). It consists of a single radio telescope made up of ten 25 meter dishes. The ten dishes are spread across the United States, from Hawaii to the Virgin Islands. One dish is located on Kitt Peak: The LBO Kitt Peak Station. Kitt Peak Station, along with the other dishes, work in unison to point at the same targets at the same time. The data is recorded and later combined. By spreading the dishes out over such a great distance, instead of building them all in the same place, a much higher resolution is gained.

McMath-Pierce Solar Telescope

The Mc Math Pierce Solar Telescope is actually 3 telescopes-in-one. It was, at the time of its completion in the 1960s, the largest solar telescope in the world. It will remain the largest until the completion of the Daniel K. Inouye Solar Telescope (DKIST) in 2018. The Solar Telescope building looks like a large number 7 rotated onto its side. The vertical tower holds up 3 flat mirrors, which reflect sunlight down the diagonal shaft—a tunnel which extends 200 feet to the ground, and another 300 feet below ground, into the mountain. At the bottom of this tunnel are the three curved primary mirrors, which reflect the light of the Sun back up to about ground level, where the Sun comes into focus in the observing room.

SARA 0.9 Meter Telescope

SARA stands for Southeastern Association for Research in Astronomy. Formed in 1989, SARA sought to form a mutually beneficial association of institutions of higher education in the southeastern United States which have relatively small departments of astronomy and physics. At the time, a 36″ telescope on Kitt Peak was being decommissioned by the National Observatory. The Observatory planned to award the telescope to new tenants who showed they could use the telescope well. SARA’s proposal for use of the telescope was selected out of about 30. Today, SARA operates the 0.9 meter telescope of Kitt Peak, as well as a 0.6 meter telescope at Cerro Tololo in Chile. Both telescopes can, and are mostly used remotely.

Your Telescope Operator and Guide. Thank you for joining me this evening! See you soon!!

Your Telescope Operator and Guide. Thank you for joining me this evening! See you soon!!

The web page for the program in which you just participated is at
Nightly Observing Program. Most of the above images were taken as
part of
the Overnight Telescope Observing Program. For more information on this unique experience please visit Overnight Telescope Observing Program.
Copyright © 2018 Kitt Peak Visitor Center


Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

Blog at

Up ↑

%d bloggers like this: