January 28th 2019 …. Phil’s NOP Group

Kitt Peak Nightly Observing Program

Splendors of the Universe on YOUR Night!

Many pictures are links to larger versions.
Click here for the “Best images of the OTOP” Gallery and more information.

Winter Hexagon

The Winter Hexagon or Winter Circle/Oval is an asterism appearing to be in the form of a hexagon with vertices at Rigel, Aldebaran, Capella, Pollux, Procyon, and Sirius. It is mostly upon the Northern Hemisphere’s celestial sphere!

Auriga

Auriga is located north of the celestial equator. Its name is the Latin word for “charioteer”, associating it with various mythological charioteers, including Erichthonius and Myrtilus. Auriga is most prominent in the northern Hemisphere winter sky, along with the five other constellations that have stars in the Winter Hexagon asterism. Auriga is half the size of the largest constellation, Hydra. Its brightest star, Capella, is an unusual multiple star system among the brightest stars in the night sky. Because of its position near the winter Milky Way, Auriga has many bright open clusters within its borders, including M36, M37, and M38. In addition, it has one prominent nebula, the Flaming Star Nebula, associated with the variable star AE Aurigae.

Canis Major

Canis Major, the “big dog”, boasts the brightest star in the night sky—Sirius! Also known as The Dog Star because of the constellation it resides in, Sirius is a massive, hot, blue star—and it’s right next door! One of the reasons Sirius is so bright is that it is so close to us—only 8.6 light-years away. It’s name comes from Greek, and means “glowing” or “scorcher”.

Canis Minor

This little constellation with a name that means “little dog” has only 2 bright stars. One of them is Procyon—one of the brightest stars in the sky, and at only 11.5 light-years away, it’s one of our nearest neighbors in the galactic neighborhood. The name Procyon comes from Greek, and means “before the dog”, referring to the star Sirius, also known as The Dog Star in neighboring Canis Major, the “big dog”.

Cassiopeia

Cassiopeia is widely recognized by its characteristic W shape, though it may look like an M, a 3, or a Σ depending on its orientation in the sky, and your position on Earth. However it’s oriented, once you’ve come to know its distinctive zig-zag pattern, you’ll spot it with ease. The plane of the Milky Way runs right through Cassiopeia, so it’s full of deep sky objects—in particular, a lot of open star clusters. Cassiopeia is named for the queen form Greek mythology who angered the sea god Poseidon when she boasted that her daughter Andromeda was more beautiful than his sea nymphs. 

Gemini

Gemini is a well known zodiac constellation. Zodiac constellations line up with the plane of the Solar System in our sky, an intersection known as the ecliptic. This means you will find planets passing through Gemini from time to time. Gemini is also grazed by the plane of the Milky Way, and therefore has a few deep sky objects within its boundaries. Gemini’s brightest stars get their names from twins Castor and Pollux of Greek mythology.

Lepus

Lepus is a smaller, medium brightness constellation. It can be found immediately to the south of the constellation Orion, at the feet of the hunter. The best known star of Lepus, is not one that is visible to the naked-eye. R Leporis, also known as Hind’s Crimson Star, is a ruby red carbon star. Just take a look with a telescope and see how strikingly red it is compared to other stars. An abundance of carbon in the star’s atmosphere filters out certain wavelengths of light, giving the star its extra red appearance.

Orion

Orion is a famous constellation, well known especially for the Belt of Orion—three stars in a line at what seems to be the waist of a human figure. The bright stars Rigel and Betelgeuse are two of the brightest stars in the sky. Between the Belt and Rigel you can see the Orion Nebula—the closest star forming region to our Solar System. A beautiful object in a telescope or binoculars, you can also just make out the nebula naked-eye.

Perseus

Hero of Greek mythology, Perseus is the character who slayed Medusa and rescued the Princess Andromeda from the sea monster Cetus. This is why you will find the constellations Andromeda, Cetus, and Andromeda’s parents Cassiopeia and Cepheus, nearby each other in the sky. Perseus’s brightest star is called Mirfak (Arabic for elbow). The plane of the Milky Way runs through Perseus, so there are many deep sky objects to be found.

Taurus

 

You can look to Taurus, the bull, to find the two closest open star clusters to our Solar System. The Pleiades (or, Seven Sisters) is the second closest at 444 light-years away. It’s an obvious cluster to even the naked eye. The Pleiades is named for the seven daughters of Atlas and Pleione of Greek Mythology. To the left of the pleiades, the Hyades (siblings to the Pleiades in mythology) is the closest open star cluster to Earth at 153 light-years away. The Hyades has a characteristic V shape to help identify it.

M42 The Orion Nebula

M42, the Orion Nebula is a region of star formation about 1,300 light-years away—the closest to our Solar System. It is roughly 30 light-years across, and contains enough material to make 2,000 stars the size of our sun.

Clouds

Kitt Peak has an abundance of clear nights, but that doesn’t mean the clouds never move in. We hope you’ll join us again another time when our dark mountain skies are at their best!

Ecliptic

The ecliptic is a path in the sky, forming a great circle around the Earth, which the Sun and other planets of the Solar System move along. It is formed where the plane of the Solar System intersects with the Earth’s sky.

Milky Way

That clumpy band of light is evidence that we live in a disk-shaped galaxy. Its pale glow is light from about 200 billion suns!

Scintillation

The twinkling of star light is a beautiful effect of the Earth’s atmosphere. As light passes through our atmosphere, its path is deviated (refracted) multiple times before reaching the ground. Stars that are near to the horizon will scintillate much more than stars high overhead since you are looking through more air (often the refracted light will display individual colors). In space, stars would not twinkle at all. Astronomers would like it if they could control the effects of this troubling twinkle.

M36 Pinwheel Cluster

M36, the “Pinwheel Cluster” is one of three bright open star clusters in the constellation of Auriga. It lies about 4,100 light-years away, and is about 14 light-years across, contains about 60 stars, and is about 25 million years old.    

M37 Salt & Pepper Cluster

M37, the “Salt and Pepper Cluster” is one of three bright open star clusters in the constellation Auriga. It is the brightest and richest of the three. It lies about 4,500 light-years away, contains about 150 stars, has a diameter of about 25 light-years, and is 450 million years old.   

M38 Starfish Cluster

M38, the “Starfish Cluster” is one of a trio of bright open star clusters in the constellation Auriga. It lies about 4,200 light-years away, has a diameter of about 25 light-years, and is 220 million years old.    

M41

M41 is an open star cluster located just below the brightest star in the night sky, Sirius. It contains about 150 stars spread out over 25 light-years, and is 2,300 light-years away.

M44 The Beehive

M44, the “Beehive Cluster,” and also known as “Praesepe,” is a large, bright, diffuse open star cluster containing about 400 stars. It lies fairly close, at a distance of under 600 light-years.

M45 The Pleiades

M45, the “Pleiades,” is a bright, nearby star cluster, in the last stages of star formation. About seven stars stand out as the brightest in the cluster, and is why the cluster is also known as the “Seven Sisters,” alluding to the Pleiades, or Seven Sisters from Greek mythology. In Japanese, the cluster is known as “スバル,” “Subaru,” and is featured as the logo of the automobile manufacturer of the same name. The Pleiades lies about 440 light-years away and is a very young (for an open star cluster) 100 million years old.

M46

M46 is an open star cluster containing over 500 stars. It lies at a distance of 5,400 light-years, and is about 30 light-years across. A small, faint, grey disc that seems to be superimposed over the cluster is actually the remnant of a dead star—a planetary nebula known as NGC 2438. NGC 2438 only coincidentally lies along the same line of sight as M46. The cluster and planetary nebula are unrelated; the planetary nebula is about 2,500 light-years closer to the Earth.

M47

M47 is a bright, diffuse open star cluster located nearby other open star cluster, M46. M47 is 1,600 light-years awat, has 50 bright stars and is about 12 light-years across.

Betelgeuse (α Orionis)

Betelgeuse (also called Alpha Orionis, α Orionis, or α Ori) is one of the brightest and largest known stars, though it is not one of the most massive. Located approximately 600 light-years from Earth, it is part of the constellation Orion and a vertex of the Winter Triangle asterism. Its large volume suggests that if it were at the center of the Solar System, it would wholly engulf Mercury, Venus, Earth, and Mars, with its surface extending out to between the orbits of Mars and Jupiter. It is classified as a red supergiant and as a semiregular variable star—that is, it shows considerable periodicity as its light changes, but this periodicity is sometimes irregular.

Castor (α Gem)

Castor (α Geminorum) is a multiple star in the constellation Gemini, the twins. Through the telescope, a close pair of bright white stars and a more distant red dwarf companion are visible, but these are each spectroscopic binaries, making Castor a six-star system. Castor is about 50 light-years away. The bright components orbit each other with a period of about 450 years.

Rigel (β Ori)

Rigel (β Orionis) is the brightest star in the constellation Orion, and the seventh brightest star in the night sky, with a visual magnitude of 0.13. Rigel is a triple star system. The primary star (Rigel A) is a blue-white supergiant around 120,000 times as luminous as the Sun. It has exhausted its core hydrogen and swollen out to 79 times the Sun’s radius. An Alpha Cygni variable, it pulsates periodically. Visible in small telescopes and 500 times fainter than Rigel A, Rigel B is itself a spectroscopic binary system, consisting of two main sequence blue-white stars of spectral type B9V that are themselves estimated to be 2.5 and 1.9 times as massive as the Sun.

3.5-Meter WIYN Telescope

The WIYN Observatory is owned and operated by the WIYN Consortium, which consists of the University of Wisconsin, Indiana University, National Optical Astronomy Observatory (NOAO), the University of Missouri, and Purdue University. This partnership between public and private universities and NOAO was the first of its kind. The telescope incorporates many technological breakthroughs including active optics hardware on the back of the primary mirror, which shapes the mirror perfectly, ensuring the telescope is focused precisely. The small, lightweight dome is well ventilated to follow nighttime ambient temperature. Instruments attached to the telescope allow WIYN to gather data and capture vivid astronomical images routinely of sub-arc second quality. The total moving weight of the WIYN telescope and its instruments is 35 tons. WIYN has earned a reputation in particular for its excellent image quality that is now available over a wider field than ever before through the addition of the One Degree Imager optical camera.

Kitt Peak VLBA Dish

The Very Long Baseline Array (VLBA) is a part of the Long Baseline Observatory (LBO). It consists of a single radio telescope made up of ten 25 meter dishes. The ten dishes are spread across the United States, from Hawaii to the Virgin Islands. One dish is located on Kitt Peak: The LBO Kitt Peak Station. Kitt Peak Station, along with the other dishes, work in unison to point at the same targets at the same time. The data is recorded and later combined. By spreading the dishes out over such a great distance, instead of building them all in the same place, a much higher resolution is gained.

Mayall 4-Meter Telescope

The Mayall 4 Meter Telescope was, at the time it was built, one of the largest telescopes in the world. Today, its mirror—which weighs 15 tons—is relatively small next to the mirrors of the world’s largest telescopes. Completed in the mid-’70s, the telescope is housed in an 18-story tall dome, which is designed to withstand hurricane force winds. A blue equatorial horseshoe mount helps the telescope point and track the sky. A new instrument called DESI (Dark Energy Spectroscopic Instrument) will soon be installed on the 4-meter. Once installed, DESI will take spectra of millions of the most distant galaxies and quasars, which astronomers will use to study the effect of dark energy on the expansion of the universe.

The Mayall 4 Meter is named for Nicholas U. Mayall, a former director of Kitt Peak National Observatory who oversaw the building of the telescope.

McMath-Pierce Solar Telescope

The Mc Math Pierce Solar Telescope is actually 3 telescopes-in-one. It was, at the time of its completion in the 1960s, the largest solar telescope in the world. It will remain the largest until the completion of the Daniel K. Inouye Solar Telescope (DKIST) in 2018. The Solar Telescope building looks like a large number 7 rotated onto its side. The vertical tower holds up 3 flat mirrors, which reflect sunlight down the diagonal shaft—a tunnel which extends 200 feet to the ground, and another 300 feet below ground, into the mountain. At the bottom of this tunnel are the three curved primary mirrors, which reflect the light of the Sun back up to about ground level, where the Sun comes into focus in the observing room.

SARA 0.9-Meter Telescope

SARA stands for Southeastern Association for Research in Astronomy. Formed in 1989, SARA sought to form a mutually beneficial association of institutions of higher education in the southeastern United States which have relatively small departments of astronomy and physics. At the time, a 36″ telescope on Kitt Peak was being decommissioned by the National Observatory. The Observatory planned to award the telescope to new tenants who showed they could use the telescope well. SARA’s proposal for use of the telescope was selected out of about 30. Today, SARA operates the 0.9 meter telescope of Kitt Peak, as well as a 0.6 meter telescope at Cerro Tololo in Chile. Both telescopes can, and are mostly used remotely.

Your Telescope Operator and Guide. Thank you for joining me this evening! See you soon!!

The web page for the program in which you just participated is at
Nightly Observing Program. Most of the above images were taken as
part of
the Overnight Telescope Observing Program. For more information on this unique experience please visit Overnight Telescope Observing Program.
Copyright © 2019 Kitt Peak Visitor Center


Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

Create a free website or blog at WordPress.com.

Up ↑

%d bloggers like this: