August 30th, 2019 …. Phil’s Dark Nebula Night Group

Kitt Peak Nightly Observing Program

Splendors of the Universe on YOUR Night!

Many pictures are links to larger versions.
Click here for the “Best images of the OTOP” Gallery and more information.

Cygnus

Cygnus is a large constellation, prominent in the Northern Hemisphere. Its name comes from the Greek for “Swan” and can be imagined as a giant, celestial swan, flying overhead, with its wings fully extended. The brightest star in Cygnus is Deneb, which is one of the brightest stars in the sky, and a whopping 800 lightyears away! Deneb is one point of an asterism called the Summer Triangle—three very bright stars that form a large triangle shape prominent in the Northern hemisphere summer skies.

Sagittarius

Sagittarius, the archer, is often depicted as a centaur wielding a bow and arrow. Within Sagittarius, is a fairly recognizable teapot shape known to many simply as The Teapot (the teapot is not a true constellation, but an asterism). The plane of the Milky Way passes through Sagittarius, and in fact, the center of the Milky Way is in the direction of the westernmost edge of this constellation—just above the spout of The Teapot. With the plane of the Milky Way passing through, there are a plethora of deep sky objects to be found in Sagittarius.

Scorpius

Both the plane of the Solar System (called the ecliptic) and the plane of the Milky Way pass through Scorpius—the scorpion. As a result, you can find both the planets of our Solar System (which move along the ecliptic), and many kinds of deep sky objects in this constellation. Scorpius’s brightest star, Antares, is also known as the Heart of the Scorpion, because of it’s reddish hue and location in the chest of the scorpion. Being both red in color, and near the ecliptic, Antares is a rival of sorts to the planet Mars, which is also reddish in color, and occasionally passes through Scorpius. The name Antares means “opposing Mars”.

M17 Swan Nebula

M17, also known as the “Swan Nebula,” or the “Omega Nebula” is a vast cloud of gas—mostly hydrogen, in which clumps of gas are contracting to make new stars. The nebula is 15 light-years across, and 5,500 light-years away.

M20 Trifid Nebula

M20, the “Trifid Nebula” gets its nickname from the dark dust lanes that seem to split it into three parts. It is a region of star formation—a giant cloud of gas, roughly 30 light-years across, and about 5,200 light-years away.

M8 Lagoon Nebula

M8: The “Lagoon Nebula.” A huge cloud of gas and dust beside an open cluster of stars (NGC 6530). The Lagoon is a stellar nursery, 4,100 lightyears away, towards the galactic core.

M31 Andromeda Galaxy

The Andromeda Galaxy is our nearest major galactic neighbor. It is a spiral galaxy 2,500,000 light-years away, and has a diameter of 220,000 light-years. This galaxy contains as much material as 1.5 trillion suns.    

M13 Hercules Globular

M13, the “Great Globular Cluster in Hercules” was first discovered by Edmund Halley in 1714, and later catalogued by Charles Messier in 1764. It contains 300,000 stars, and is 22,000 light-years away. Light would need over a century to traverse its diameter.

M4

M4 is a globular star cluster located near the bright, orange star Antares, in the constellation Scorpius. It is on the small side, as globular clusters go—only 70-75 light-years across. It is about 7,200 light-years away, which makes it possibly the closest globular cluster to our solar system.    

Clouds

Kitt Peak has an abundance of clear nights, but that doesn’t mean the clouds never move in. We hope you’ll join us again another time when our dark mountain skies are at their best!

Ecliptic

The ecliptic is a path in the sky, forming a great circle around the Earth, which the Sun and other planets of the Solar System move along. It is formed where the plane of the Solar System intersects with the Earth’s sky.

Meteors

Quick streaks of light in the sky called meteors, shooting stars, or falling stars are not stars at all: they are small bits of rock or iron that heat up, glow, and vaporize upon entering the Earth’s atmosphere. When the Earth encounters a clump of many of these particles, we see a meteor shower lasting hours or days.

Milky Way

That clumpy band of light is evidence that we live in a disk-shaped galaxy. Its pale glow is light from about 200 billion suns!

M11 Wild Duck Cluster

M11 is an open star cluster also known as the “Wild Duck Cluster,” due to its purported prominant V-shape, reminiscent of a flock of wild ducks in flight. This open cluster is 20 light-years in diameter and 6,200 light-years away.   

M16 Eagle Nebula

M16 is a cluster of very young stars located within the “Eagle Nebula” (NGC 6611, also known as the “Star Queen Nebula” or “The Spire”). The nebula itself is generally too faint to see without taking a long exposure photograph. In the constellation Serpens, this cluster was discovered by Jean-Philippe de Cheseaux in 1745-46. The nebula contains several active star-forming gas and dust regions, including the Pillars of Creation made famous by the Hubble Space Telescope.

M6 The Butterfly Cluster

M6, the “Butterfly Cluster” is an open star cluster, located near the tail of Scorpius, next to another open cluter: M7. Containing a few hundred stars, it is smaller than neighbor cluster M7, at about 12 light-years across, and is 1,600 light-years away.

M7 Ptolemy Cluster

M7, also known as the “Ptolemy Cluster” is an open star cluster near the “stinger” of Scorpius. It is a group of suns in a gravitational dance, 25 light-years across and about 1,000 light-years away.

Jupiter

Jupiter is the largest planet in the Solar System, a “gas giant” 11 Earth-diameters across. Its atmosphere contains the Great Red Spot, a long-lived storm 2-3 times the size of the Earth. The 4 large Galilean satellites and at least 63 smaller moons orbit Jupiter.

Saturn

Saturn, the second-largest planet in the Solar System, is known for its showy but thin rings made of ice chunks as small as dust and as large as buildings. Its largest moon, Titan, has an atmosphere and hydrocarbon lakes; at least 61 smaller moons orbit Saturn.

The Galilean Moons

Jupiter’s four largest moons are known as the Galilean Moons, named for Galileo, who was the first astronomer to study them in depth and determine that they were orbiting Jupiter. Their individual names are Io, Europa, Ganymede, and Callisto—in orbital order from closest to Jupiter to furthest out. Ganymede is the largest of these four moons, and is the largest moon in our Solar System. Io, the closest of these four moons to Jupiter, is the most volcanic world in our Solar System. Io is home to hundreds of active volcanos. Its neighbor, and the next furthest from Jupiter of the four, Europa, is a dramatic contrast to Io with its icy surface. Europa is covered by water, which is frozen solid at the surface. The furthest our of the four, Callisto is a fascinating world in our Solar System because it is so utterly geologically dead. Without weather, moonquakes, volcanism, or any other surface-altering processes, Callisto’s surface is billions of years old—a kind of record of the history of the Solar System.

3.5-Meter WIYN Telescope

The WIYN Observatory is owned and operated by the WIYN Consortium, which consists of the University of Wisconsin, Indiana University, National Optical Astronomy Observatory (NOAO), the University of Missouri, and Purdue University. This partnership between public and private universities and NOAO was the first of its kind. The telescope incorporates many technological breakthroughs including active optics hardware on the back of the primary mirror, which shapes the mirror perfectly, ensuring the telescope is focused precisely. The small, lightweight dome is well ventilated to follow nighttime ambient temperature. Instruments attached to the telescope allow WIYN to gather data and capture vivid astronomical images routinely of sub-arc second quality. The total moving weight of the WIYN telescope and its instruments is 35 tons. WIYN has earned a reputation in particular for its excellent image quality that is now available over a wider field than ever before through the addition of the One Degree Imager optical camera.

Kitt Peak VLBA Dish

The Very Long Baseline Array (VLBA) is a part of the Long Baseline Observatory (LBO). It consists of a single radio telescope made up of ten 25 meter dishes. The ten dishes are spread across the United States, from Hawaii to the Virgin Islands. One dish is located on Kitt Peak: The LBO Kitt Peak Station. Kitt Peak Station, along with the other dishes, work in unison to point at the same targets at the same time. The data is recorded and later combined. By spreading the dishes out over such a great distance, instead of building them all in the same place, a much higher resolution is gained.

Mayall 4-Meter Telescope

The Mayall 4 Meter Telescope was, at the time it was built, one of the largest telescopes in the world. Today, its mirror—which weighs 15 tons—is relatively small next to the mirrors of the world’s largest telescopes. Completed in the mid-’70s, the telescope is housed in an 18-story tall dome, which is designed to withstand hurricane force winds. A blue equatorial horseshoe mount helps the telescope point and track the sky. A new instrument called DESI (Dark Energy Spectroscopic Instrument) will soon be installed on the 4-meter. Once installed, DESI will take spectra of millions of the most distant galaxies and quasars, which astronomers will use to study the effect of dark energy on the expansion of the universe.

The Mayall 4 Meter is named for Nicholas U. Mayall, a former director of Kitt Peak National Observatory who oversaw the building of the telescope.

McMath-Pierce Solar Telescope

The Mc Math Pierce Solar Telescope is actually 3 telescopes-in-one. It was, at the time of its completion in the 1960s, the largest solar telescope in the world. It will remain the largest until the completion of the Daniel K. Inouye Solar Telescope (DKIST) in 2018. The Solar Telescope building looks like a large number 7 rotated onto its side. The vertical tower holds up 3 flat mirrors, which reflect sunlight down the diagonal shaft—a tunnel which extends 200 feet to the ground, and another 300 feet below ground, into the mountain. At the bottom of this tunnel are the three curved primary mirrors, which reflect the light of the Sun back up to about ground level, where the Sun comes into focus in the observing room.

Your Telescope Operator and Guide. Thank you for joining me this evening! See you soon!!

The web page for the program in which you just participated is at
Nightly Observing Program. Most of the above images were taken as
part of
the Overnight Telescope Observing Program. For more information on this unique experience please visit Overnight Telescope Observing Program.
Copyright © 2019 Kitt Peak Visitor Center


Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

Blog at WordPress.com.

Up ↑

%d bloggers like this: