October 1st, 2019 Telescope with Lorelei

Kitt Peak Nightly Observing Program

Splendors of the Universe on YOUR Night!

Many pictures are links to larger versions.

Click here for the “Best images of the OTOP” Gallery and more information.

M17 Swan Nebula

M17, also known as the “Swan Nebula,” or the “Omega Nebula” is a vast cloud of gas—mostly hydrogen, in which clumps of gas are contracting to make new stars. The nebula is 15 light-years across, and 5,500 light-years away.

M31 Andromeda Galaxy

The Andromeda Galaxy is our nearest major galactic neighbor. It is a spiral galaxy 2,500,000 light-years away, and has a diameter of 220,000 light-years. This galaxy contains as much material as 1.5 trillion suns.

Milky Way

That clumpy band of light is evidence that we live in a disk-shaped galaxy. Its pale glow is light from about 200 billion suns!


Human technology! There are almost 500 of these in Low Earth Orbit (we can’t see the higher ones). We see these little “moving stars” because they reflect sunlight.

The Green Flash

What we call “The Green Flash” is not so much a flash as a flicker of green color, seen on the top of the sun as it sets (or rises). This rare event needs just the right atmospheric conditions.

M11 Wild Duck Cluster

M11 is an open star cluster also known as the “Wild Duck Cluster,” due to its purported prominant V-shape, reminiscent of a flock of wild ducks in flight. This open cluster is 20 light-years in diameter and 6,200 light-years away.


Jupiter is the largest planet in the Solar System, a “gas giant” 11 Earth-diameters across. Its atmosphere contains the Great Red Spot, a long-lived storm 2-3 times the size of the Earth. The 4 large Galilean satellites and at least 63 smaller moons orbit Jupiter.


Saturn, the second-largest planet in the Solar System, is known for its showy but thin rings made of ice chunks as small as dust and as large as buildings. Its largest moon, Titan, has an atmosphere and hydrocarbon lakes; at least 61 smaller moons orbit Saturn.

The Galilean Moons

Jupiter’s four largest moons are known as the Galilean Moons, named for Galileo, who was the first astronomer to study them in depth and determine that they were orbiting Jupiter. Their individual names are Io, Europa, Ganymede, and Callisto—in orbital order from closest to Jupiter to furthest out. Ganymede is the largest of these four moons, and is the largest moon in our Solar System. Io, the closest of these four moons to Jupiter, is the most volcanic world in our Solar System. Io is home to hundreds of active volcanos. Its neighbor, and the next furthest from Jupiter of the four, Europa, is a dramatic contrast to Io with its icy surface. Europa is covered by water, which is frozen solid at the surface. The furthest our of the four, Callisto is a fascinating world in our Solar System because it is so utterly geologically dead. Without weather, moonquakes, volcanism, or any other surface-altering processes, Callisto’s surface is billions of years old—a kind of record of the history of the Solar System.

2.1-Meter Telescope

The 2.1 Meter telescope has an 84″ primary mirror made of Pyrex, that weighs 3,000 lbs. The telescope became operational in 1964—one of the first operational reserach telescopes on the mountain. As part of the National Optical Astronomy Observatory (NOAO) for many decades, it is an important part of the history of the mountain, and has made many important contributions to astronomical research. Despite its significant role within the National Observatory, by 2015 the time came to pass the telescope on to new tenants, so NOAO could focus its efforts on its newer, more advanced telescopes. The Robo-AO team stepped in, and installed their state-of-the-art robotic adaptive optics system on the 2.1 Meter. Adaptive optics allows telescopes to nearly eliminate the distorting effects of the atmosphere, greatly increasing the resolution of the telescope. Thanks to its new tenants, suite of instruments, and the dark skies of Kitt Peak, the 2.1-meter continues to make important contributions to astronomical research.

3.5-Meter WIYN Telescope

The WIYN Observatory is owned and operated by the WIYN Consortium, which consists of the University of Wisconsin, Indiana University, National Optical Astronomy Observatory (NOAO), the University of Missouri, and Purdue University. This partnership between public and private universities and NOAO was the first of its kind. The telescope incorporates many technological breakthroughs including active optics hardware on the back of the primary mirror, which shapes the mirror perfectly, ensuring the telescope is focused precisely. The small, lightweight dome is well ventilated to follow nighttime ambient temperature. Instruments attached to the telescope allow WIYN to gather data and capture vivid astronomical images routinely of sub-arc second quality. The total moving weight of the WIYN telescope and its instruments is 35 tons. WIYN has earned a reputation in particular for its excellent image quality that is now available over a wider field than ever before through the addition of the One Degree Imager optical camera.

SARA 0.9-Meter Telescope

SARA stands for Southeastern Association for Research in Astronomy. Formed in 1989, SARA sought to form a mutually beneficial association of institutions of higher education in the southeastern United States which have relatively small departments of astronomy and physics. At the time, a 36″ telescope on Kitt Peak was being decommissioned by the National Observatory. The Observatory planned to award the telescope to new tenants who showed they could use the telescope well. SARA’s proposal for use of the telescope was selected out of about 30. Today, SARA operates the 0.9 meter telescope of Kitt Peak, as well as a 0.6 meter telescope at Cerro Tololo in Chile. Both telescopes can, and are mostly used remotely.

The web page for the program in which you just participated is at
Nightly Observing Program. Most of the above images were taken as
part of
the Overnight Telescope Observing Program. For more information on this unique experience please visit Overnight Telescope Observing Program.
Copyright © 2019 Kitt Peak Visitor Center



Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

Blog at WordPress.com.

Up ↑

%d bloggers like this: