October 21st, 2019 NOP with Lorelei

Kitt Peak Nightly Observing Program

Splendors of the Universe on YOUR Night!

Many pictures are links to larger versions.
Click here for the “Best images of the OTOP” Gallery and more information.

Big Dipper

The Big Dipper (also known as the Plough) is an asterism consisting of the seven brightest stars of the constellation Ursa Major. Four define a “bowl” or “body” and three define a “handle” or “head”. It is recognized as a distinct grouping in many cultures. The North Star (Polaris), the current northern pole star and the tip of the handle of the Little Dipper, can be located by extending an imaginary line from Big Dipper star Merak (β) through Dubhe (α). This makes it useful in celestial navigation.

Engagement Ring

The Engagement Ring: Through binoculars, the North Star (Polaris) seems to be the brightest on a small ring of stars. Not a constellation or cluster, this asterism looks like a diamond engagement ring on which Polaris shines brightly as the diamond.

Little Dipper

Constellation Ursa Minor is colloquially known in the US as the Little Dipper, because its seven brightest stars seem to form the shape of a dipper (ladle or scoop). The star at the end of the dipper handle is Polaris, the North Star. Polaris can also be found by following a line through two stars in Ursa Major—Alpha and Beta Ursae Majoris—that form the end of the ‘bowl’ of the Big Dipper, for 30 degrees (three upright fists at arms’ length) across the night sky.

Summer Triangle

The Summer Triangle is an asterism involving a triangle drawn on the northern hemisphere’s celestial sphere. Its defining vertices are the stars Altair, Deneb, and Vega, which are the brightest stars in the constellations Aquila, Cygnus, and Lyra, respectively.

Teapot and Teaspoon

The brightest stars in the zodiac constellation Sagittarius form the shape of a teapot, complete with lid, handle, and spout. The plane of the Milky Way runs through Sagittarius, and just over the spout and lid of the teapot, making it look as if steam is rising from the spout of the teapot. The center of our Milky Way galaxy is in the direction of this starry steam. If you look above the handle of the teapot, you might spot a teaspoon.

The Coathanger

Also called Cr 399, or Brocchi’s Cluster, this group of stars might remind you of a closet. The stars that make up The Coarhanger are not a part of a cluster, but instead, have randomly arranged themselves in a coathanger-like shape. Chaotic stellar orbital motion can sometimes make interesting shapes!

Aquila

The brightest star in Aquila is Altair—one of the brightest starts in the summer sky, and a point of The Summer Triangle. The name aquila is latin for eagle, and the brightest stars in this constellation do seem similar to the shaape of an eagle standing upright with its wings spread out at its sides. Altair is at the head, or more precisely, the eye of the eagle. In Greek mythology, Aquila carried Zeus’s thunderbolts.

Auriga

Auriga is located north of the celestial equator. Its name is the Latin word for “charioteer”, associating it with various mythological charioteers, including Erichthonius and Myrtilus. Auriga is most prominent in the northern Hemisphere winter sky, along with the five other constellations that have stars in the Winter Hexagon asterism. Auriga is half the size of the largest constellation, Hydra. Its brightest star, Capella, is an unusual multiple star system among the brightest stars in the night sky. Because of its position near the winter Milky Way, Auriga has many bright open clusters within its borders, including M36, M37, and M38. In addition, it has one prominent nebula, the Flaming Star Nebula, associated with the variable star AE Aurigae.

Cygnus

Cygnus is a large constellation, prominent in the Northern Hemisphere. Its name comes from the Greek for “Swan” and can be imagined as a giant, celestial swan, flying overhead, with its wings fully extended. The brightest star in Cygnus is Deneb, which is one of the brightest stars in the sky, and a whopping 800 lightyears away! Deneb is one point of an asterism called the Summer Triangle—three very bright stars that form a large triangle shape prominent in the Northern hemisphere summer skies.

Hercules

Hercules is named for the famous hero of Greek mythology by the same name. It’s one of the larger constellations, but its stars are of only moderate brightness. The Keystone is a well known trapezoid-shaped asterism (association of stars that are not an official constellation) within Hercules. This constellation is host to M13 (Messier 13), a globular star cluster. Otherwise known as the Hercules Globular Cluster, M13 is home to 300,000 stars, and is just over 22,000 light-years away.

Lyra

Lyra is a small, but notable constellation. It is host to Vega—the fifth brightest star in the sky (or sixth, counting the Sun). Not far from Vega is Messier object 57—the Ring Nebula, which is perhaps the best known planetary nebula in our sky. Lyra’s name is Greek for lyre—a kind of harp.

Perseus

Hero of Greek mythology, Perseus is the character who slayed Medusa and rescued the Princess Andromeda from the sea monster Cetus. This is why you will find the constellations Andromeda, Cetus, and Andromeda’s parents Cassiopeia and Cepheus, nearby each other in the sky. Perseus’s brightest star is called Mirfak (Arabic for elbow). The plane of the Milky Way runs through Perseus, so there are many deep sky objects to be found.

Sagittarius

Sagittarius, the archer, is often depicted as a centaur wielding a bow and arrow. Within Sagittarius, is a fairly recognizable teapot shape known to many simply as The Teapot (the teapot is not a true constellation, but an asterism). The plane of the Milky Way passes through Sagittarius, and in fact, the center of the Milky Way is in the direction of the westernmost edge of this constellation—just above the spout of The Teapot. With the plane of the Milky Way passing through, there are a plethora of deep sky objects to be found in Sagittarius.

Ursa Major

Ursa Major, or, the Big Bear, is one of the best known and most well recognized constellations, but you might know it by a different name. Contained within the boundaries of the constellation Ursa Major is the Big Dipper, which is not a true constellation, but an asterism. The Big Dipper is useful for finding both the North Star and the bright star Arcturus. Follow the curve of the handle to “arc to Arcturus” and use to two stars in the dipper opposite the handle to point to the North Star.

Ursa Minor

Ursa Minor, the Little Bear, is much fainter than it’s companion  the Big Bear, Ursa Major. Within Ursa Minor is the well known asterism The Little Dipper. The end of the tail of the bear, or the end of the handle of the dipper, is a star called Polaris—the Pole Star, or the North Star. This special star happens to sit at the point where the Earth’s axis of rotation intersects the sky

M17 Swan Nebula

M17, also known as the “Swan Nebula,” or the “Omega Nebula” is a vast cloud of gas—mostly hydrogen, in which clumps of gas are contracting to make new stars. The nebula is 15 light-years across, and 5,500 light-years away.

M20 Trifid Nebula

M20, the “Trifid Nebula” gets its nickname from the dark dust lanes that seem to split it into three parts. It is a region of star formation—a giant cloud of gas, roughly 30 light-years across, and about 5,200 light-years away.

M8 Lagoon Nebula

M8: The “Lagoon Nebula.” A huge cloud of gas and dust beside an open cluster of stars (NGC 6530). The Lagoon is a stellar nursery, 4,100 lightyears away, towards the galactic core.

M31 Andromeda Galaxy

The Andromeda Galaxy is our nearest major galactic neighbor. It is a spiral galaxy 2,500,000 light-years away, and has a diameter of 220,000 light-years. This galaxy contains as much material as 1.5 trillion suns.    

M33 Triangulum Galaxy

The Triangulum Galaxy, like M31, is a prominent member of our local group of galaxies. It lies at a distance of 2,900,000 light-years away and is approximately 60,000 light-years across.

Clouds

Kitt Peak has an abundance of clear nights, but that doesn’t mean the clouds never move in. We hope you’ll join us again another time when our dark mountain skies are at their best!

Ecliptic

The ecliptic is a path in the sky, forming a great circle around the Earth, which the Sun and other planets of the Solar System move along. It is formed where the plane of the Solar System intersects with the Earth’s sky.

Meteors

Quick streaks of light in the sky called meteors, shooting stars, or falling stars are not stars at all: they are small bits of rock or iron that heat up, glow, and vaporize upon entering the Earth’s atmosphere. When the Earth encounters a clump of many of these particles, we see a meteor shower lasting hours or days.

Milky Way

That clumpy band of light is evidence that we live in a disk-shaped galaxy. Its pale glow is light from about 200 billion suns!

Satellites

Human technology! There are almost 500 of these in Low Earth Orbit (we can’t see the higher ones). We see these little “moving stars” because they reflect sunlight.

M11 Wild Duck Cluster

M11 is an open star cluster also known as the “Wild Duck Cluster,” due to its purported prominant V-shape, reminiscent of a flock of wild ducks in flight. This open cluster is 20 light-years in diameter and 6,200 light-years away.   

M45 The Pleiades

M45, the “Pleiades,” is a bright, nearby star cluster, in the last stages of star formation. About seven stars stand out as the brightest in the cluster, and is why the cluster is also known as the “Seven Sisters,” alluding to the Pleiades, or Seven Sisters from Greek mythology. In Japanese, the cluster is known as “スバル,” “Subaru,” and is featured as the logo of the automobile manufacturer of the same name. The Pleiades lies about 440 light-years away and is a very young (for an open star cluster) 100 million years old.

Jupiter

Jupiter is the largest planet in the Solar System, a “gas giant” 11 Earth-diameters across. Its atmosphere contains the Great Red Spot, a long-lived storm 2-3 times the size of the Earth. The 4 large Galilean satellites and at least 63 smaller moons orbit Jupiter.

Saturn

Saturn, the second-largest planet in the Solar System, is known for its showy but thin rings made of ice chunks as small as dust and as large as buildings. Its largest moon, Titan, has an atmosphere and hydrocarbon lakes; at least 61 smaller moons orbit Saturn.

The Galilean Moons

Jupiter’s four largest moons are known as the Galilean Moons, named for Galileo, who was the first astronomer to study them in depth and determine that they were orbiting Jupiter. Their individual names are Io, Europa, Ganymede, and Callisto—in orbital order from closest to Jupiter to furthest out. Ganymede is the largest of these four moons, and is the largest moon in our Solar System. Io, the closest of these four moons to Jupiter, is the most volcanic world in our Solar System. Io is home to hundreds of active volcanos. Its neighbor, and the next furthest from Jupiter of the four, Europa, is a dramatic contrast to Io with its icy surface. Europa is covered by water, which is frozen solid at the surface. The furthest our of the four, Callisto is a fascinating world in our Solar System because it is so utterly geologically dead. Without weather, moonquakes, volcanism, or any other surface-altering processes, Callisto’s surface is billions of years old—a kind of record of the history of the Solar System.

McMath-Pierce Solar Telescope

The Mc Math Pierce Solar Telescope is actually 3 telescopes-in-one. It was, at the time of its completion in the 1960s, the largest solar telescope in the world. It will remain the largest until the completion of the Daniel K. Inouye Solar Telescope (DKIST) in 2018. The Solar Telescope building looks like a large number 7 rotated onto its side. The vertical tower holds up 3 flat mirrors, which reflect sunlight down the diagonal shaft—a tunnel which extends 200 feet to the ground, and another 300 feet below ground, into the mountain. At the bottom of this tunnel are the three curved primary mirrors, which reflect the light of the Sun back up to about ground level, where the Sun comes into focus in the observing room.

Your Telescope Operator and Guide. Thank you for joining me this evening! See you soon!!

The web page for the program in which you just participated is at
Nightly Observing Program. Most of the above images were taken as
part of
the Overnight Telescope Observing Program. For more information on this unique experience please visit Overnight Telescope Observing Program.
Copyright © 2019 Kitt Peak Visitor Center


Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

Blog at WordPress.com.

Up ↑

%d bloggers like this: