October 27, 2019 – Nightly Observing Program with Sara

Kitt Peak Nightly Observing Program

Splendors of the Universe on YOUR Night!

Many pictures are links to larger versions.
Click here for the “Best images of the OTOP” Gallery and more information.

Little Dipper

Constellation Ursa Minor is colloquially known in the US as the Little Dipper, because its seven brightest stars seem to form the shape of a dipper (ladle or scoop). The star at the end of the dipper handle is Polaris, the North Star. Polaris can also be found by following a line through two stars in Ursa Major—Alpha and Beta Ursae Majoris—that form the end of the ‘bowl’ of the Big Dipper, for 30 degrees (three upright fists at arms’ length) across the night sky.

Cassiopeia

Cassiopeia is widely recognized by its characteristic W shape, though it may look like an M, a 3, or a Σ depending on its orientation in the sky, and your position on Earth. However it’s oriented, once you’ve come to know its distinctive zig-zag pattern, you’ll spot it with ease. The plane of the Milky Way runs right through Cassiopeia, so it’s full of deep sky objects—in particular, a lot of open star clusters. Cassiopeia is named for the queen form Greek mythology who angered the sea god Poseidon when she boasted that her daughter Andromeda was more beautiful than his sea nymphs. 

Lyra

Lyra is a small, but notable constellation. It is host to Vega—the fifth brightest star in the sky (or sixth, counting the Sun). Not far from Vega is Messier object 57—the Ring Nebula, which is perhaps the best known planetary nebula in our sky. Lyra’s name is Greek for lyre—a kind of harp.

Sagittarius

Sagittarius, the archer, is often depicted as a centaur wielding a bow and arrow. Within Sagittarius, is a fairly recognizable teapot shape known to many simply as The Teapot (the teapot is not a true constellation, but an asterism). The plane of the Milky Way passes through Sagittarius, and in fact, the center of the Milky Way is in the direction of the westernmost edge of this constellation—just above the spout of The Teapot. With the plane of the Milky Way passing through, there are a plethora of deep sky objects to be found in Sagittarius.

M31 Andromeda Galaxy

The Andromeda Galaxy is our nearest major galactic neighbor. It is a spiral galaxy 2,500,000 light-years away, and has a diameter of 220,000 light-years. This galaxy contains as much material as 1.5 trillion suns.    

M15

M15 is a distant globular cluster, 33,000 light-years away. It has 100,000 stars, and is one of the oldest known globular clusters, having formed about 12 billion years ago.

Ecliptic

The ecliptic is a path in the sky, forming a great circle around the Earth, which the Sun and other planets of the Solar System move along. It is formed where the plane of the Solar System intersects with the Earth’s sky.

Meteors

Quick streaks of light in the sky called meteors, shooting stars, or falling stars are not stars at all: they are small bits of rock or iron that heat up, glow, and vaporize upon entering the Earth’s atmosphere. When the Earth encounters a clump of many of these particles, we see a meteor shower lasting hours or days.

Milky Way

That clumpy band of light is evidence that we live in a disk-shaped galaxy. Its pale glow is light from about 200 billion suns!

Satellites

Human technology! There are almost 500 of these in Low Earth Orbit (we can’t see the higher ones). We see these little “moving stars” because they reflect sunlight.

M57 Ring Nebula

M57: The Ring Nebula. This remnant of a dead star looks exactly as it’s name says – a ring or doughnut shape cloud of gas. The nebula is about 2.6 lightyears across and lies about 2,300 lightyears away.

Jupiter

Jupiter is the largest planet in the Solar System, a “gas giant” 11 Earth-diameters across. Its atmosphere contains the Great Red Spot, a long-lived storm 2-3 times the size of the Earth. The 4 large Galilean satellites and at least 63 smaller moons orbit Jupiter.

Saturn

Saturn, the second-largest planet in the Solar System, is known for its showy but thin rings made of ice chunks as small as dust and as large as buildings. Its largest moon, Titan, has an atmosphere and hydrocarbon lakes; at least 61 smaller moons orbit Saturn.

The Galilean Moons

Jupiter’s four largest moons are known as the Galilean Moons, named for Galileo, who was the first astronomer to study them in depth and determine that they were orbiting Jupiter. Their individual names are Io, Europa, Ganymede, and Callisto—in orbital order from closest to Jupiter to furthest out. Ganymede is the largest of these four moons, and is the largest moon in our Solar System. Io, the closest of these four moons to Jupiter, is the most volcanic world in our Solar System. Io is home to hundreds of active volcanos. Its neighbor, and the next furthest from Jupiter of the four, Europa, is a dramatic contrast to Io with its icy surface. Europa is covered by water, which is frozen solid at the surface. The furthest our of the four, Callisto is a fascinating world in our Solar System because it is so utterly geologically dead. Without weather, moonquakes, volcanism, or any other surface-altering processes, Callisto’s surface is billions of years old—a kind of record of the history of the Solar System.

Albireo (β Cyg)

Named long before anyone knew it was more than one star, Albireo (β Cygni) comprises of a set of stars marking the beak of Cygnus, the swan. Through a telescope, we see two components shining in pale, but noticeably contrasting colors: orange and blue. The difference in color is due to the stars’ difference in temperature of over 9000°C! The brighter orange component, Albireo A, is actually a true binary system, though we can’t resolve two stars in the telescope. The fainter blue component, Albireo B, may be only passing by, and not gravitationally interacting with Albireo A at all. Albireo is about 430 light-years away.

Double Double (ε Lyr)

The Double-Double (ε Lyrae) looks like two stars in binoculars, but a good telescope shows that both of these two are themselves binaries. However, there may be as many as ten stars in this system! The distant pairs are about 0.16 light-year apart and take about half a million years to orbit one another. The Double-Double is about 160 light-years from Earth.

Your Telescope Operator and Guide. Thank you for joining me this evening! See you soon!!

The web page for the program in which you just participated is at
Nightly Observing Program. Most of the above images were taken as
part of
the Overnight Telescope Observing Program. For more information on this unique experience please visit Overnight Telescope Observing Program.
Copyright © 2019 Kitt Peak Visitor Center


Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

Create a free website or blog at WordPress.com.

Up ↑

%d bloggers like this: