February 22, 2018 – Johnathan

Kitt Peak Nightly Observing Program

Splendors of the Universe on YOUR Night!

Many pictures are links to larger versions.

Click here for the “Best images of the OTOP” Gallery and more information.

M42 The Orion Nebula

 

M42, the Orion Nebula is a region of star formation about 1,300 light-years away—the closest to our Solar System. It is roughly 30 light-years across, and contains enough material to make 2,000 stars the size of our sun.

M31 Andromeda Galaxy

This target was shown during the first session, but unfortunately not the second.

The Andromeda Galaxy is our nearest major galactic neighbor. It is a spiral galaxy 2,500,000 light-years away, and has a diameter of 220,000 light-years. This galaxy contains as much material as 1.5 trillion suns.

M82 Cigar Galaxy

 

M82, the “Cigar Galaxy” is an edge-on spiral galaxy, 12 million light-years away, and perhaps 37,000 light-years across. There are vast gas clouds in this galaxy, where stars are being born at an incredible rate.

M79

This target was shown during the first session, but unfortunately not the second. 

Though dim, M79 is just about the only globular cluster easily seen in the Northern Hemisphere Winter sky. It lies 41,000 light-years away and orbits our galaxy further out than our sun does—unusual since most globular clusters are congregated towards the center of the galaxy.

M37 Salt & Pepper Cluster

 

M37, the “Salt and Pepper Cluster” is one of three bright open star clusters in the constellation Auriga. It is the brightest and richest of the three. It lies about 4,500 light-years away, contains about 150 stars, has a diameter of about 25 light-years, and is 450 million years old.

Moon

The same side of the Moon always faces Earth because the lunar periods of rotation and revolution are the same. The surface of the moon is covered with impact craters and lava-filled basins. The Moon is about a fourth of Earth’s diameter and is about 30 Earth-diameters away.

Almach (γ And)

 

Almach (γ Andromedae) appears as a golden and blue double star in small telescopes. The blue star itself is actually three stars, too close together to see as individuals, making Almach a four-star system. It is about 350 light-years away, and orbits with a period of several thousand years.

2.1 Meter Telescope and Robo-AO

The 2.1 Meter telescope has an 84″ primary mirror made of Pyrex, that weighs 3,000 lbs. The telescope became operational in 1964—one of the first operational reserach telescopes on the mountain. As part of the National Optical Astronomy Observatory (NOAO) for many decades, it is an important part of the history of the mountain, and has made many important contributions to astronomical research. Despite its significant role within the National Observatory, by 2015 the time came to pass the telescope on to new tenants, so NOAO could focus its efforts on its newer, more advanced telescopes. The Robo-AO team stepped in, and installed their state-of-the-art robotic adaptive optics system on the 2.1 Meter. Adaptive optics allows telescopes to nearly eliminate the distorting effects of the atmosphere, greatly increasing the resolution of the telescope. Thanks to its new tenants, suite of instruments, and the dark skies of Kitt Peak, the 2.1-meter continues to make important contributions to astronomical research.

3.5 Meter WIYN Telescope

The WIYN Observatory is owned and operated by the WIYN Consortium, which consists of the University of Wisconsin, Indiana University, National Optical Astronomy Observatory (NOAO), the University of Missouri, and Purdue University. This partnership between public and private universities and NOAO was the first of its kind. The telescope incorporates many technological breakthroughs including active optics hardware on the back of the primary mirror, which shapes the mirror perfectly, ensuring the telescope is focused precisely. The small, lightweight dome is well ventilated to follow nighttime ambient temperature. Instruments attached to the telescope allow WIYN to gather data and capture vivid astronomical images routinely of sub-arc second quality. The total moving weight of the WIYN telescope and its instruments is 35 tons. WIYN has earned a reputation in particular for its excellent image quality that is now available over a wider field than ever before through the addition of the One Degree Imager optical camera.

Calypso

Though the Calypso telescope and its 1.2 meter mirror have now been acquired by the Large Synoptic Survey Telescope team, it once occupied the large “garage on stilts” on the west side of the mountain. Edgar O. Smith, a businessman-turned-astrophysicist, designed Kitt Peak’s only privately owned telescope to create the sharpest possible images. The garage-like building rolls away on rails, leaving the telescope very exposed, and able to cool to ambient temperature. Its adaptive optics system can adjust 1,000 times per second to remove atmospheric blurring. Calypso will eventually be moved to Cerro Pachón in the Atacama Desert of Chile. The “garage on stilts” sits empty.

Mayall 4 Meter Telescope

The Mayall 4 Meter Telescope was, at the time it was built, one of the largest telescopes in the world. Today, its mirror—which weighs 15 tons—is relatively small next to the mirrors of the world’s largest telescopes. Completed in the mid-’70s, the telescope is housed in an 18-story tall dome, which is designed to withstand hurricane force winds. A blue equatorial horseshoe mount helps the telescope point and track the sky. A new instrument called DESI (Dark Energy Spectroscopic Instrument) will soon be installed on the 4-meter. Once installed, DESI will take spectra of millions of the most distant galaxies and quasars, which astronomers will use to study the effect of dark energy on the expansion of the universe.

The Mayall 4 Meter is named for Nicholas U. Mayall, a former director of Kitt Peak National Observatory who oversaw the building of the telescope.

McMath-Pierce Solar Telescope

The Mc Math Pierce Solar Telescope is actually 3 telescopes-in-one. It was, at the time of its completion in the 1960s, the largest solar telescope in the world. It will remain the largest until the completion of the Daniel K. Inouye Solar Telescope (DKIST) in 2018. The Solar Telescope building looks like a large number 7 rotated onto its side. The vertical tower holds up 3 flat mirrors, which reflect sunlight down the diagonal shaft—a tunnel which extends 200 feet to the ground, and another 300 feet below ground, into the mountain. At the bottom of this tunnel are the three curved primary mirrors, which reflect the light of the Sun back up to about ground level, where the Sun comes into focus in the observing room.

SARA 0.9 Meter Telescope

SARA stands for Southeastern Association for Research in Astronomy. Formed in 1989, SARA sought to form a mutually beneficial association of institutions of higher education in the southeastern United States which have relatively small departments of astronomy and physics. At the time, a 36″ telescope on Kitt Peak was being decommissioned by the National Observatory. The Observatory planned to award the telescope to new tenants who showed they could use the telescope well. SARA’s proposal for use of the telescope was selected out of about 30. Today, SARA operates the 0.9 meter telescope of Kitt Peak, as well as a 0.6 meter telescope at Cerro Tololo in Chile. Both telescopes can, and are mostly used remotely.

Your Telescope Operator and Guide. Thank you for joining me this evening! See you soon!!

The web page for the program in which you just participated is at
Nightly Observing Program. Most of the above images were taken as
part of
the Overnight Telescope Observing Program. For more information on this unique experience please visit Overnight Telescope Observing Program.
Copyright © 2018 Kitt Peak Visitor Center


Leave a comment

Create a free website or blog at WordPress.com.

Up ↑