Feb 17th NOP with Fred

Kitt Peak Nightly Observing Program

Splendors of the Universe on YOUR Night!

Many pictures are links to larger versions.
Click here for the “Best images of the OTOP” Gallery and more information.

Pegasus

This constellation is named for one of the most beloved creatures of Greek mythology—the winged horse named Pegasus. Within Pegasus is a well known asterism containing the 3 brightest stars in the constellation (+ 1 in Andromeda) called The Great Square of Pegasus. Alpheratz, the brightest star in the square, actually belongs to the constellation Andromeda, but in the past, this star had been considered to belong to both constellations.

M42 The Orion Nebula

M42, the Orion Nebula is a region of star formation about 1,300 light-years away—the closest to our Solar System. It is roughly 30 light-years across, and contains enough material to make 2,000 stars the size of our sun.

Meteors

Quick streaks of light in the sky called meteors, shooting stars, or falling stars are not stars at all: they are small bits of rock or iron that heat up, glow, and vaporize upon entering the Earth’s atmosphere. When the Earth encounters a clump of many of these particles, we see a meteor shower lasting hours or days.

Milky Way

That clumpy band of light is evidence that we live in a disk-shaped galaxy. Its pale glow is light from about 200 billion suns!

Satellites

Human technology! There are almost 500 of these in Low Earth Orbit (we can’t see the higher ones). We see these little “moving stars” because they reflect sunlight.

M1 Crab Nebula

M1: The Crab Nebula. The explosion that created this nebula was seen by Chinese astronomers in 1054 A.D. This explosion was bright enough to be seen in the daytime for almost a month. The nebula is 11 lightyears in diameter and is expanding at the rate of 1,500 km per second.

Uranus

Uranus, the seventh planet from the Sun, was discovered by Sir William Herschel in 1781. It has a dark set of rings and at least 27 moons. Uranus’s axis of rotation is almost 90 degrees from those of the other planets, as if Uranus has been tipped onto its side.

Venus

Venus, the second planet, is the brightest natural object in the sky other than the Sun and Moon and is often erroneously called the “morning star” or “evening star.” It is completely wrapped in sulfuric acid clouds and its surface is hot enough to melt lead.

Castor (α Gem)

Castor (α Geminorum) is a multiple star in the constellation Gemini, the twins. Through the telescope, a close pair of bright white stars and a more distant red dwarf companion are visible, but these are each spectroscopic binaries, making Castor a six-star system. Castor is about 50 light-years away. The bright components orbit each other with a period of about 450 years.

2.1-Meter Telescope

The 2.1 Meter telescope has an 84″ primary mirror made of Pyrex, that weighs 3,000 lbs. The telescope became operational in 1964—one of the first operational reserach telescopes on the mountain. As part of the National Optical Astronomy Observatory (NOAO) for many decades, it is an important part of the history of the mountain, and has made many important contributions to astronomical research. Despite its significant role within the National Observatory, by 2015 the time came to pass the telescope on to new tenants, so NOAO could focus its efforts on its newer, more advanced telescopes. The Robo-AO team stepped in, and installed their state-of-the-art robotic adaptive optics system on the 2.1 Meter. Adaptive optics allows telescopes to nearly eliminate the distorting effects of the atmosphere, greatly increasing the resolution of the telescope. Thanks to its new tenants, suite of instruments, and the dark skies of Kitt Peak, the 2.1-meter continues to make important contributions to astronomical research.

3.5-Meter WIYN Telescope

The WIYN Observatory is owned and operated by the WIYN Consortium, which consists of the University of Wisconsin, Indiana University, National Optical Astronomy Observatory (NOAO), the University of Missouri, and Purdue University. This partnership between public and private universities and NOAO was the first of its kind. The telescope incorporates many technological breakthroughs including active optics hardware on the back of the primary mirror, which shapes the mirror perfectly, ensuring the telescope is focused precisely. The small, lightweight dome is well ventilated to follow nighttime ambient temperature. Instruments attached to the telescope allow WIYN to gather data and capture vivid astronomical images routinely of sub-arc second quality. The total moving weight of the WIYN telescope and its instruments is 35 tons. WIYN has earned a reputation in particular for its excellent image quality that is now available over a wider field than ever before through the addition of the One Degree Imager optical camera.

90" Bok Telescope

The 90″ (2.3 m) Bok Telescope is the largest telescope operated solely by the University of Arizona’s Steward Observatory. The telescope was dedicated on June 23, 1969 and on April 28, 1996 was officially named in honor of Prof. Bart Bok, director of Steward Observatory from 1966-1969. The Bok Telescope is available for use by astronomers from the University of Arizona, Arizona State University, and Northern Arizona University.

Arizona Radio Observatory 12-Meter Telescope

Originally, a 36 foot (11 meter) radio telescope resided in this dome. Built in 1967, the 36 Foot Telescope, as it was known, was a part of the National Radio Astronomy Observatory (NRAO). In 1984, it was replaced with a slightly larger dish, and the name was changed to the 12 Meter Telescope.

In 2000, the NRAO passed control of the telescope to the University of Arizona. The University of Arizona had been operating the Submillimeter Telescope (SMT) located on Mount Graham since 1992. When it took over operations of the 12m, it created the Arizona Radio Observatory (ARO) which now runs both telescopes.

In 2013, the telescope was replaced with ESO’s ALMA prototype antenna. The new dish is the same size, but has a much better surface accuracy (thereby permitting use at shorter wavelengths), and a more precise mount with better pointing accuracy. The 12m Radio Telescope is used to study molecules in space through the use of molecular spectroscopy at millimeter wavelengths. Many of the molecules that have been discovered in the interstellar medium were discovered by the 12m.

Calypso

Though the Calypso telescope and its 1.2 meter mirror have now been acquired by the Large Synoptic Survey Telescope team, it once occupied the large “garage on stilts” on the west side of the mountain. Edgar O. Smith, a businessman-turned-astrophysicist, designed Kitt Peak’s only privately owned telescope to create the sharpest possible images. The garage-like building rolls away on rails, leaving the telescope very exposed, and able to cool to ambient temperature. Its adaptive optics system can adjust 1,000 times per second to remove atmospheric blurring. Calypso will eventually be moved to Cerro Pachón in the Atacama Desert of Chile. The “garage on stilts” sits empty.

Kitt Peak VLBA Dish

The Very Long Baseline Array (VLBA) is a part of the Long Baseline Observatory (LBO). It consists of a single radio telescope made up of ten 25 meter dishes. The ten dishes are spread across the United States, from Hawaii to the Virgin Islands. One dish is located on Kitt Peak: The LBO Kitt Peak Station. Kitt Peak Station, along with the other dishes, work in unison to point at the same targets at the same time. The data is recorded and later combined. By spreading the dishes out over such a great distance, instead of building them all in the same place, a much higher resolution is gained.

Mayall 4-Meter Telescope

The Mayall 4 Meter Telescope was, at the time it was built, one of the largest telescopes in the world. Today, its mirror—which weighs 15 tons—is relatively small next to the mirrors of the world’s largest telescopes. Completed in the mid-’70s, the telescope is housed in an 18-story tall dome, which is designed to withstand hurricane force winds. A blue equatorial horseshoe mount helps the telescope point and track the sky. A new instrument called DESI (Dark Energy Spectroscopic Instrument) will soon be installed on the 4-meter. Once installed, DESI will take spectra of millions of the most distant galaxies and quasars, which astronomers will use to study the effect of dark energy on the expansion of the universe.

The Mayall 4 Meter is named for Nicholas U. Mayall, a former director of Kitt Peak National Observatory who oversaw the building of the telescope.

McMath-Pierce Solar Telescope

The Mc Math Pierce Solar Telescope is actually 3 telescopes-in-one. It was, at the time of its completion in the 1960s, the largest solar telescope in the world. It will remain the largest until the completion of the Daniel K. Inouye Solar Telescope (DKIST) in 2018. The Solar Telescope building looks like a large number 7 rotated onto its side. The vertical tower holds up 3 flat mirrors, which reflect sunlight down the diagonal shaft—a tunnel which extends 200 feet to the ground, and another 300 feet below ground, into the mountain. At the bottom of this tunnel are the three curved primary mirrors, which reflect the light of the Sun back up to about ground level, where the Sun comes into focus in the observing room.

MDM Observatory

MDM Observatory is located on a lower ridge to the southwest of the main observatory campus. Its name comes from its original member universities—University of Michigan, Dartmouth and MIT. Current members of the observatory are University of Michigan, Dartmouth, Columbia, Ohio State University, and Ohio University. MDM consists of two telescopes—the McGraw Hill 1.3 meter and the Hiltner 2.4 meter.

SARA 0.9-Meter Telescope

SARA stands for Southeastern Association for Research in Astronomy. Formed in 1989, SARA sought to form a mutually beneficial association of institutions of higher education in the southeastern United States which have relatively small departments of astronomy and physics. At the time, a 36″ telescope on Kitt Peak was being decommissioned by the National Observatory. The Observatory planned to award the telescope to new tenants who showed they could use the telescope well. SARA’s proposal for use of the telescope was selected out of about 30. Today, SARA operates the 0.9 meter telescope of Kitt Peak, as well as a 0.6 meter telescope at Cerro Tololo in Chile. Both telescopes can, and are mostly used remotely.

Spacewatch

Spacewatch is the name of a group at the University of Arizona’s Lunar and Planetary Laboratory founded by Prof. Tom Gehrels and Dr. Robert S. McMillan in 1980.  Today, Spacewatch is led by Dr. Robert S. McMillan.  The original goal of Spacewatch was to explore the various populations of small objects in the solar system, and study the statistics of asteroids and comets in order to investigate the dynamical evolution of the solar system.  CCD scanning studies the Main-Belt, Centaur, Trojan, Comet, Trans-Neptunian, and Earth-approaching asteroid populations.  Spacewatch also found potential targets for interplanetary spacecraft missions. Spacewatch currently focuses primarily on followup astrometry of such targets, and especially follows up objects that might present a hazard to the Earth.

The RCT

The Robotically-Controlled Telescope (RCT) is a 1.3-meter telescope on a German equatorial mount. The RCT occupies the dome across from the Kitt Peak Visitor Center. The long building attached to the RCT dome is the Kitt Peak administration building. The RCT name originally stood for Remotely-Controlled Telescope, and it served the KPNO user community almost 30 years before being closed in 1995. The telescope was originally proposed by the Space Sciences Division at KPNO as the Remote Control Telescope System (RCTS) to be an engineering research platform for the development of remote control protocols for envisioned orbital telescopes. In later years, the telescope was used to test out various instrumentation that was later used on the larger 2.1-meter and 4-meter telescopes of Kitt Peak. In 2004 The RCT Consortium began operating the telescope as its new tenants. Today, the telescope is mostly used either remotely, with observers operating the telescope via the internet, or robotically, with the telescope opening and observing automatically, using its programming to determine what to observe based on scheduling and observing conditions.

Your Telescope Operator and Guide. Thank you for joining me this evening! See you soon!!

The web page for the program in which you just participated is at
Nightly Observing Program. Most of the above images were taken as
part of
the Overnight Telescope Observing Program. For more information on this unique experience please visit Overnight Telescope Observing Program.
Copyright © 2020 Kitt Peak Visitor Center


One thought on “Feb 17th NOP with Fred

Add yours

  1. Fred you were an excellent guide/instructor. Thank you for sharing your wealth of knowledge in a fun and interesting way. I am a soon to be retired school teacher and I can tell you your delivery of info is awesome!

Leave a comment

Blog at WordPress.com.

Up ↑